Effect of Nitrogen Doping and Acene Cores Elongation on Charge Transport and Electronic Nature of Organic Semiconductor Materials: A DFT Study

Document Type : Research Article

Author

Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, P.O. Box 9004, SAUDI ARABIA

Abstract

With the intention to tune the charge transport nature of preliminary 4,6-di(thiophen-2-yl)pyrimidine (DTP) structure, six novel V-shaped organic semiconductor compounds were designed by nitrogen doping and acene moieties elongation. Initially, the nitrogen atoms were doped in DTP to design 4,6-bis-thiazol-2-yl-pyrimidine (1). Moreover, by ℼ-bridge elongation strategy, 4,6-bis-benzo[b]thiazol-2-yl-pyrimidine (2), 4,6-bis(naphthothiazol-2-yl)pyrimidine (3), 4,6-bis(anthracenothiazol-2-yl)pyrimidine (4), 4,6-bis(tetracenothiazol-2-yl)pyrimidine (5), and
4,6-bis(pentacenothiazol-2-yl)pyrimidine (6) were designed by substituting various oligocenes
at both ends. The ground, as well as excited state structures, were optimized using density functional theory (DFT) and time-dependent DFT at B3LYP/6-31G** and TD-B3LYP/6-31G** levels, correspondingly. We explored their frontier molecular orbitals, electron injection aptitude, photo-stability, Ionization Energies (IE), electron affinity (EA), and reorganization energies. The bridge elongation significantly elevates the EA while reducing the IE which would result in to decrease
in the injection barrier for electron and hole transport. Furthermore, acene cores elongation expressively decreases the hole and electron reorganization energies as compared to frequently used materials pentacene and tris(8-hydroxyquinolinato)aluminum (mer-Alq3) which revealed that newly designed materials would be proficient to be used in p- and/or n-type semiconductor devices.

Keywords

Main Subjects


[1] Zhou R., Yang C., Zou W., Abdullah Adil M., Li H., Lv M., Huang Z., Lv M., Zhang J., Lu K., Wei Z., Combining Chlorination and Sulfuration Strategies for High-Performance All-Small-Molecule Organic Solar Cells, J Energy Chem., 52: 228-233 (2021).
[2] Seif N., Farhadi A., Badri R., Kiasat A.R., An Experimental and Theoretical Study on Bicyclo-3,4-Dihydropyrimidinone Derivative: Synthesis and DFT Calculation, Iran. J. Chem. Chem. Eng. (IJCCE), 39(5): 21-33 (2019).
[3] Khalil Warad I., Al-Nuri M., Ali O., Abu-Reidah I.M., Barakat A., Ben Hadda T., Zarrouk A., Radi S., Touzani R., Hicham E., Synthesis, Physico-Chemical, Hirschfield Surface and DFT/B3LYP Calculation of Two New Hexahydropyrimidine Heterocyclic Compounds, Iran. J. Chem. Chem. Eng. (IJCCE), 38(4): 59-68 (2019).
[5] Mesta M., Carvelli M., de Vries R.J., van Eersel H., van der Holst J.J.M., Schober M., Furno M., Lüssem B., Leo K., Loebl P., Coehoorn R., Bobbert P.A., Molecular-Scale Simulation of Electroluminescence in a Multilayer White Organic Light-Emitting Diode, Nature Materials, 12(7): 652-658 (2013).
[6] Green M.A., Emery K., Hishikawa Y., Warta W., Dunlop E.D., Solar Cell Efficiency Tables (Version 39), Prog. Photovolt., 20(1): 12-20 (2012).
[7] Shrestha S., Photovoltaics Literature Survey (No. 104), Prog. Photovolt., 21(6): 1429-1431 (2013).
[8] Irfan A., Al-Sehemi A.G., Assiri M.A., Mumtaz M.W., Exploring the Electronic, Optical and Charge Transfer Properties of Acene-Based Organic Semiconductor Materials, Bull. Mat. Sci., 42(4): 145 (2019).
[9] Irfan A., Imran M., Thomas R., Mumtaz M.W., Qayyum M.A., Ullah S., Assiri M.A., Al-Sehemi A.G., Exploration of Electronic Nature and Intrinsic Mobility of 10-(1,3-Dithiol-2-Ylidene)Anthracene Based Organic Semiconductor Materials, Optik: 165530 (2020).
[11] Krygowski T.M., Cyrañski M.K., Czarnocki Z., Häfelinger G., Katritzky A.R., Aromaticity: A Theoretical Concept of Immense Practical Importance, Tetrahedron, 56(13): 1783-1796 (2000).
[12] Cao J., London G., Dumele O., von Wantoch Rekowski M., Trapp N., Ruhlmann L., Boudon C., Stanger A., Diederich F., The Impact of Antiaromatic Subunits in [4n+2] Π-Systems: Bispentalenes with [4n+2] Π-Electron Perimeters and Antiaromatic Character, J. Am. Chem. Soc., 137(22): 7178-7188 (2015).
[13] Mei J., Diao Y., Appleton A.L., Fang L., Bao Z., Integrated Materials Design of Organic Semiconductors for Field-Effect Transistors, J. Am. Chem. Soc., 135(18): 6724-6746 (2013).
[14] Bendikov M., Wudl F., Perepichka D.F., Tetrathiafulvalenes, Oligoacenenes, and Their Buckminsterfullerene Derivatives: The Brick and Mortar of Organic Electronics, Chem. Rev., 104(11): 4891-4946 (2004).
[15] Anthony J.E., Facchetti A., Heeney M., Marder S.R., Zhan X., n-Type Organic Semiconductors in Organic Electronics, Adv. Mater., 22(34): 3876-3892 (2010).
[16] Eftaiha A.a.F., Sun J.-P., Hill I.G., Welch G.C., Recent Advances of Non-Fullerene, Small Molecular Acceptors for Solution Processed Bulk Heterojunction Solar Cells, J. Mater. Chem. A, 2(5): 1201-1213 (2014).
[17] Wang Y., Fang D., Fu T., Ali M.U., Shi Y., He Y., Hu Z., Yan C., Mei Z., Meng H., Anthracene Derivative Based Multifunctional Liquid Crystal Materials for Optoelectronic Devices, Mater. Chem. Front.  (2020).
[18] Zade S.S., Zamoshchik N., Reddy A.R., Fridman-Marueli G., Sheberla D., Bendikov M., Products and Mechanism of Acene Dimerization. A Computational Study, J. Am. Chem. Soc., 133(28): 10803-10816 (2011).
[19] Baroudi B., Argoub K., Hadji D., Benkouider A.M., Toubal K., Yahiaoui A., Djafri A., Synthesis and DFT Calculations of Linear and Nonlinear Optical Responses of Novel 2-Thioxo-3-N,(4-Methylphenyl) Thiazolidine-4 One, J. Sulfur Chem., 41(3): 310-325 (2020).
[20] Di Ventra M., Pantelides S.T., Lang N.D., First-Principles Calculation of Transport Properties of a Molecular Device, Phys. Rev. Lett., 84(5): 979-982 (2000).
[21] Ran X.-Q., Feng J.-K., Ren A.-M., Li W.-C., Zou L.-Y., Sun C.-C., Theoretical Study on Photophysical Properties of Ambipolar Spirobifluorene Derivatives as Efficient Blue-Light-Emitting Materials, J. Phys. Chem. A, 113(27): 7933-7939 (2009).
[22] Irfan A., Muhammad S., Chaudhry A.R., Al-Sehemi A.G., Jin R., Tuning of Optoelectronic and Charge Transport Properties in Star Shaped Anthracenothiophene-Pyrimidine Derivatives as Multifunctional Materials, Optik, 149 (Supplement C): 321-331 (2017).
[23] Zhang J., Wu G., He C., Deng D., Li Y., Triphenylamine-Containing D-A-D Molecules with (Dicyanomethylene)Pyran as an Acceptor Unit for Bulk-Heterojunction Organic Solar Cells, J. Mater. Chem., 21(11): 3768-3774 (2011).
[24] Minemawari H., Yamada T., Matsui H., Tsutsumi J.y., Haas S., Chiba R., Kumai R., Hasegawa T., Inkjet Printing of Single-Crystal Films, Nature, 475: 364-367 (2011).
[25] Kim D.H., Park Y.D., Jang Y., Yang H., Kim Y.H., Han J.I., Moon D.G., Park S., Chang T., Chang C., Joo M., Ryu C.Y., Cho K., Enhancement of Field-Effect Mobility Due to Surface-Mediated Molecular Ordering in Regioregular Polythiophene Thin Film Transistors, Adv. Funct. Mater., 15(1): 77-82 (2005).
[26] Wang L., Nan G., Yang X., Peng Q., Li Q., Shuai Z., Computational Methods for Design of Organic Materials with High Charge Mobility, Chem. Soc. Rev., 39(2): 423-434 (2010).
[27] Anthony J.E., The Larger Acenes: Versatile Organic Semiconductors, Angew. Chem. Int. Ed., 47(3): 452-483 (2008).
[28] Anthony J.E., Functionalized Acenes and Heteroacenes for Organic Electronics, Chem. Rev., 106(12): 5028-5048 (2006).
[29] Sánchez-Carrera R.S., Coropceanu V., da Silva Filho D.A., Friedlein R., Osikowicz W., Murdey R., Suess C., Salaneck W.R., Brédas J.-L., Vibronic Coupling in the Ground and Excited States of Oligoacene Cations, J. Phys. Chem. B, 110(38): 18904-18911 (2006).
[30]  Petersson G.A., Bennett A., Tensfeldt T.G., Al-Laham M.A., Shirley W.A., Mantzaris J., A Complete Basis Set Model Chemistry. I. The Total Energies of Closed‐Shell Atoms and Hydrides of the First-Row Elements, J. Chem. Phys., 89(4): 2193-2218 (1988).
[31] Lee C., Yang W., Parr R.G., Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density, Phys. Rev. B, 37(2): 785-789 (1988).
[32] Zhang C., Liang W., Chen H., Chen Y., Wei Z., Wu Y., Theoretical Studies on the Geometrical and Electronic Structures of N-Methyle-3,4-Fulleropyrrolidine, J. Mol. Struct. (TheoChem), 862(1–3): 98-104 (2008).
[33] Greenham N.C., Moratti S.C., Bradley D.D.C., Friend R.H., Holmes A.B., Efficient Light-Emitting Diodes Based on Polymers with High Electron Affinities, Nature, 365(6447): 628-630 (1993).
[34] Marcus R.A., Sutin N., Electron Transfers in Chemistry and Biology, Biochim. Biophys. Acta - Rev. Bioenerg., 811(3): 265-322 (1985).
[35] Tsiper E.V., Soos Z.G., Gao W., Kahn A., Electronic Polarization at Surfaces and Thin Films of Organic Molecular Crystals: PTCDA, Chem. Phys. Lett., 360(1–2): 47-52 (2002).
[36] Brédas J.L., Calbert J.P., da Silva Filho D.A., Cornil J., Organic Semiconductors: A Theoretical Characterization of the Basic Parameters Governing Charge Transport, Proc. Natl. Acad. Sci., 99(9): 5804-5809 (2002).
[37] Soos Z.G., Tsiper E.V., Painelli A., Polarization in Organic Molecular Crystals and Charge-Transfer Salts, J. Lumin., 110(4): 332-341 (2004).
[38] Frisch M.J., Trucks G.W., Schlegel H.B. et al., Gaussian-16, Revision A.1, Gaussian, Inc., Wallingford, CT. 2016.
[39] Irfan A., Rasool Chaudhry A., G. Al-Sehemi A., Sultan Al-Asiri M., Muhammad S., Kalam A., Investigating the Effect of Acene-Fusion and Trifluoroacetyl Substitution on the Electronic and Charge Transport Properties by Density Functional Theory, J. Saudi. Chem. Soc., 20(3): 336-342 (2016).
[41] Pearson R.G., The Principle of Maximum Hardness, Acc. Chem. Res., 26: 250-255 (1993).
[42] Pearson R.G., Absolute Electronegativity and Absolute Hardness of Lewis Acids and Bases, J. Am. Chem. Soc., 107(24): 6801-6806 (1985).
[43] Parr R.G., Pearson R.G., Absolute Hardness: Companion Parameter to Absolute Electronegativity, J. Am. Chem. Soc., 105(26): 7512-7516 (1983).
[44] Rauk A., Orbital Interaction Theory of Organic Chemistry, 2nd Edn John Wiley & Sons: Newyork, 34:  (2001).
[46] Geerlings P., De Proft F., Langenaeker W., Conceptual Density Functional Theory, Chem. Rev., 103(5): 1793-1874 (2003).
[47] Politzer P., Truhlar (Eds.) D.G., “Chemical Applications of Atomic and Molecular Electrostatic Potentials”, Springer, Boston, MA,  (1981).
[48] Stewart R.F., On the Mapping of Electrostatic Properties from Bragg Diffraction Data, Chem. Phys. Lett., 65(2): 335-342 (1979).
[49] Irfan A., Zhang J., Chang Y., Theoretical Investigations of the Charge Transfer Properties of Anthracene Derivatives, Theor. Chem. Acc., 127(5): 587-594 (2010).
[50] Marcus R.A., Electron Transfer Reactions in Chemistry. Theory and Experiment, ‎Rev. Mod. Phys., 65(3): 599-610 (1993).
[51] Gruhn N.E., da Silva Filho D.A., Bill T.G., Malagoli M., Coropceanu V., Kahn A., Brédas J.-L., The Vibrational Reorganization Energy in Pentacene:  Molecular Influences on Charge Transport, J. Am. Chem. Soc., 124(27): 7918-7919 (2002).
[54] Irfan A., Cui R., Zhang J., Hao L., Push–Pull Effect on the Charge Transfer, and Tuning of Emitting Color for Disubstituted Derivatives of Mer-Alq3, Chem. Phys., 364(1–3): 39-45 (2009).