Selective and Efficient Ligandless Water-in-Oil Emulsion Liquid Membrane Transport of Thorium(IV) Ions

Document Type: Research Article

Authors

1 Phase Equilibria Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, P. O. Box 45371-38791, Zanjan, I.R. IRAN

2 Phase Equilibria Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan

Abstract

The present paper concerns on the selective and very efficient transport of thorium(IV) ions from aqueous solutions through an emulsion liquid membranes composed by paraffin and a surfactant, without carrier requirement. The influence of pH of the external aqueous phase, the surfactant concentration in the membrane phase, the type, and concentration of the acid used in the receiving phase, the emulsification and mixing speed on the process efficiency were examined and discussed. The optimized conditions were: liquid paraffin as diluent, 5% surfactant (nonionic polyamine surfactant span-80), emulsification rate 5250 rpm, 15 min of stirring at 750 rpm in the extraction step, pH 5, oil/aqueous ratio of 3 in emulsions and using 0.3 M solution of sulfuric acid as stripping phase. Under optimized experimental conditions, thorium ions were selectively and quantitatively transported from its mixture solution with lanthanides La(III), Sm(III), Eu(III) and Er(III). The concentration of thorium ions, in single component transport experiment, was measured spectrophotometrically using ArsenazoIII as the indicator at 655 nm, and the analysis of metal ions in competitive experiments was performed by an ICP-OES instrument under recommended conditions provided by the instrument’s manufacturer.

Keywords

Main Subjects


[1] Aguilar M., Cortina J.L., “Solvent Extraction and Liquid Membrane”, CRC Press, New York (2008).

[2] Noble R.D., Stern S.A., “Membrane Separations Technology: Principles and Applications”, Elsevier, Amsterdam (1995).

[3] Bartsch R.A., Way J.D., “Chemical Separations with Liquid Membranes”, ACS symposium series number 642. ACS, Washington DC (1996).

[4] Sastre A.M., Kumar A., Shukla J.P., Singh R.K., Improved Techniques in Liquid Membrane Separations: an overview, Sep. Purif. Method., 27: 213-298 (1998).

[5] Mohapatra P.K., Manchanda V.K., Liquid Membrane Based Separations of Actinides and Fission Products, Ind. J. Chem., 42A: 2925-2938 (2003).

[6] Araki T., Tsukube H., “Liquid Membranes: Chemical Applications”, CRC Press, Florida (2000).

[7] Larson K., Raghuraman B., Wiencek J., Electrical and Chemical Demulsification Techniques for Microemulsion Liquid Membranes, J. Membr. Sci., 91: 231-248 (1994).

[8] El-Reefy S.A., El-Sherif E.A., Aly H.F., Recovery of 234Th from Natural Uranium Using Liquid Emulsion Membrane Based on HDEHP-HCl System, J. Radioanal. Nucl. Chem., 207: 129-136 (1996).

[9] Schuegerl K., Mohrmann A., Gutknecht W., Hauertmann H., Application of Liquid Membrane Emulsion for Recovery of Metals from Mining Waste Waters and Zinc Liquor, Desalination, 53: 197-215 (1985).

[10] Gameiro M.L.F., Bento P., Ismael M.R.C., Reis M.T.A., Carvalho J.M.R., Extraction of Copper from Ammoniacal Medium by Emulsion Liquid Membranes Using LIX 54, J. Membr. Sci., 293: 151-160 (2007).

[15] Abbasian K., Kargari A., Kaghazchi T., Investigation of Stabilized Emulsion by Polymer and Its Effect on the Extraction of Phenol from Aqueous Solution by Emulsion Liquid Membrane, Nashrieh SHimi va Mohandesi Shimi Iran (NSMSI), 32: 57-67 (2013). [in Persian]

[17] Fathi S.A.M., Yaftian M.R., Kargari A., Water-in-Oil Emulsion Liquid Membrane Transport of L-cysteine, Separ. Sci. Technol., 48: 105-112 (2013).

[18] Mohagheghi E., Vosoughi M., Aalemzadeh I., Investigation and Optimization of Phenylalanine Extraction by W/O/W Emulsion Liquid Membrane, Nashrieh Shimi va Mohandesi Shimi Iran (NSMSI), 27: 83-92 (2008). [in Persian]

[20] Arnaud-Neu F., Browne J.K., Byrne D., Marrs D.J., McKervey M.A., O’Hagan P., Schwing-Weill M.J., Walker A., Extraction and Complexation of Alkali, Alkaline Earth, and F-Element Cations by Calixaryl Phosphine Oxides, Chem. Eur. J., 5: 175-186 (1999).

[21] Yaftian M.R., Eshraghi M.E., Hassanzadeh L., Extractive Properties of Tri-n-octylphosphine Oxide towards Thorium(IV) and Europium Ions from Nitrate Media, Iran. J. Chem. Chem. Eng. (IJCCE), 22: 71-76 (2003).

[22] Yaftian M.R., Vahedpour M., Burgard M., Matt D., Solvent Extraction and Transport of Rare Earth Ions Using 5,11,17,23-tetra-tert-butyl-25,27-bis(diethylcarbamoylmethoxy)-26,28- dihydroxycalix [4]arene, Iran. J. Chem. Chem. Eng. (IJCCE), 19: 60-64 (2000).

[23] Yaftian M.R., Hassanzadeh L., Eshraghi M.E., Matt D., Solvent Extraction of Thorium(IV) and Europium(III) Ions by Diphenyl-N,N-dimethylcarbamoylmethylphosphine oxide from Aqueous Nitrate Media, Sep. Purif. Technol., 31: 261-268 (2003).

[24] Yaftian M.R., Taheri R., Matt D., Lower-Rim Phosphorylated Calix[4]arens; Their Use as Extracting Agents for Thorium(IV) and Europium(III) Ions, Phosphorus Sulfur Silicon, 178: 1225-1230 (2003).

[25] Yaftian M.R., Zamani A.A., Rostamnia S., Thorium (IV) Ion-Selective Transport through a Bulk Liquid Membrane Containing 2-thenoyltrifluoroacetone as Extractant-Carrier, Sep. Purif. Technol., 49: 71-75 (2006).

[26] Sehati N., Shiri-Yekta Z., Zamani A.A., Yaftian M.R., Noshiranzadeh N., Solvent Extraction of Th(IV) and Eu(III) Ions by 3,5-di-tertbutyl- 2-Hydroxy-Benzaldehyde Oxime from Aqueous Chloride Media, Separ. Sci. Technol., 47: 670-676 (2012).

[27] Choppin G.R., Khankhasayev M.Kh., “Chemical Separation Technologies and Related Methods of Nuclear Waste Management”, Kluwer, Dordrecht (1999).

[28] Chipmen N.A., Wai C.M., “Separation Techniques in Nuclear Waste Management”, CRC Press, Boca Raton, FL (1996).

[29] Vijayalakshmi R., Mishra S.L., Singh H., Gupta C.K., Processing of Xenotime Concentrate by Sulphuric Acid Digestion and Selective Thorium Precipitation for Separation of Rare Earths, Hydrometallurgy, 61: 75-80 (2001).

[32] Khanchi A.R., Sedghi H., Ansar SH., Fasihi J., Akbari I., Investigation of Thorium Preconcentration Process on 5th Anomaly of the Saghand Ore and Its Optimization Using Statistical Method, J. Nucl. Sci. Technol., 1(67): 14-21 (2014).

[33] Nilchi A., Rasouli Garmarodi S., Shariati Dehghan T., Sorption of Uranium (VI) and Thorium (IV) Ions from Aqueous Solutions by Nano Particle of Ion Exchanger SnO2, J. Nucl. Sci. Technol., 2(60): 15-21 (2012).

[34] Alamdar Milani S., Eskandari Nasab M., Extractive Separation of Thorium, Uranium and Rare Earths from Nitrate Medium by Cyanex 272, J. Nucl. Sci. Technol., 1(63): 24-34 (2012).

[35] Nilchi A.R., Shariati Dehghan T., Rasouli Garmarodi S., Solid Phase Extraction of Uranium and Thorium Ions on Octadecyl Silica Cartridge Modified with Cyanex302, J. Nucl. Sci. Technol., 3(65): 23-26 (2013).

[36] Zhang Y.Q., Xu Y., Huang X.W., Long Z.Q., Cui D.L., Hu F., Study on Thorium Recovery from Bastnaesite Treatment Process, J. Rare Earth., 30: 374-377 (2012).

[37] Zamani A.A., Yaftian M.R., Dallali N., Improved Extraction-Separation of Lanthanum/Europium Ions by Bis(2-ethylhexyl)phosphoric Acid Using 12-Crown-4 as an Ion Selective Masking Agent, Iran. J. Chem. Chem. Eng. (IJCCE), 25: 15-19 (2006).

[39] Yaftian M.R., Taheri R., Zamani A.A., Matt D., Thermodynamics of the Solvent Extraction of Thorium and Europium Nitrates by Neutral Phosphorylated Ligands, J. Radioanal. Nucl. Chem., 262: 455-459 (2004).

[42] Du H.S., Wood D.J., Elshani S., Wai C.M., Separation of Thorium fromLanthanides by Solvent Extraction with Ionizable Crown Ethers, Talanta, 40: 173-177 (1993).

 

[45] Lee C.J., Wang S.S., Wang S.G., Extraction of Trivalent Europium via Emulsion Liquid Membrane Containing PC-88A as Mobile Carrier, Ind. Eng. Chem. Res., 33: 1556-1564 (1994).

[48] Mohamed Y.T., Hasan M.A., El-Reefy S.A., Aly H.F., Modeling of the Permeation of Thorium through Liquid Emulsion Membrane, Separ. Sci. Technol., 42: 2289-2302 (2007).

[49] Chowta S., Mohapatra P.K., Tripathi S.C., Tomar B.S., Manchanda V.K., Recovery and Pre-Concentration of Americium (III) from Dilute Acid Solutions Using an Emulsion Liquid Membrane Containing Di-2-ethylhexyl phosphoric acid (D2EHPA) as Extractant, J. Radioanal. Nucl. Chem., 285: 309-314 (2010).

[50] Kulkarni P.S., Tiwari K.K., Mahajani V.V., Membrane Stability and Enrichment of Nickel in the Liquid Emulsion Membrane Process, J. Chem. Technol. Biotechnol., 75: 553-560 (2000).

[52] Reis M.T.A., Carvalho J.M.R., Recovery of Zinc from an Industrial Effluent by Emulsion Liquid Membranes, J. Membr. Sci., 84: 201-211 (1993).

[53] Winston Ho W.S., Sirkar K.K., “Membrane Handbook”, Van Nostrand Reinhold, New York (1992).

[54] Othmana N., Mata H., Goto M., Separation of Silver from Photographic Wastes by Emulsion Liquid Membrane System, J. Membr. Sci., 282: 171-177 (2006).

[55] Valenzuela F., Fonseca C., Basualto C., Correa O., Tapia C., Sapag J., Removal of Copper Ions from a Waste Mine Water by a Liquid Emulsion Membrane Method, Miner. Eng., 18: 33-40 (2005).

[57] Mortaheb H.R., Kosuge H., Mokhtarani B., Amini M.H., Banihashemi H.R., Study on Removal of Cadmium from Wastewater by Emulsion Liquid Membrane, J. Hazard. Mater., 165: 630-636 (2009).

[58] Datta S., Bhattacharya P.K., Verma N., Removal of Aniline from Aqueous Solution in a Mixed Flow Reactor Using Emulsion Liquid Membrane,
J. Membr. Sci., 226: 185-201 (2003).