Electrooxidation of Formic Acid and Formaldehyde on the Fe3O4@Pt Core-Shell Nanoparticles/Carbon-Ceramic Electrode

Document Type : Research Article

Authors

Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, I.R. IRAN

Abstract

In the present work, the electrooxidation of formic acid and formaldehyde; potentially important fuels for future fuel cells, was investigated on the Fe3O4@Pt core-shell nanoparticles/carbon-ceramic electrode (Fe3O4@Pt/CCE). The Fe3O4@Pt nanoparticles were prepared via a simple and fast chemical method and their surface morphology, nanostructure properties, chemical composition, crystal phase, and electrochemical behavior were investigated by scanning electron microscope, transmission electron microscope, X-ray diffraction, energy dispersive X-ray spectroscopy and electrochemical methods, respectively. Then the electrocatalytic activity of the Fe3O4@Pt/CCE toward the oxidation of formic acid and formaldehyde was studied in details. The primary electrochemical analysis shows that the Fe3O4@Pt/CCE has superior catalytic activity and stability for formic acid and formaldehyde oxidation compared to Pt-alone nanoparticles on the carbon-ceramic electrode (Pt/CCE). The present investigation demonstrates that the Fe3O4@Pt/CCE electrocatalyst may play a significant role in future fuel cell applications.

Keywords

Main Subjects


[1] Serrano E., Rus G., García-Martínez J., Nanotechnology for Sustainable Energy, Renew. Sust. Energy Rev., 13: 2373-2384 (2009).
[2] Carrette L., Friedrich K. A., Stimming U., Fuel Cells: Principles, Types, Fuels, and Application, Chem. Phys. Chem., 4: 162-193 (2000).
[3] Lamy C., Belgsir E. M., Léger J. M., Electrocatalytic Oxidation of Aliphatic Alcohols: Application to the Direct Alcohol Fuel Cell (DAFC), J. Appl. Electrochem., 31: 799-809 (2001).
[4] Corti H. R., Gonzalez E. R., “Direct Alcohol Fuel Cells: Materials, Performance, Durability and Applications”, Springer (2014).
[6] Hamidi P., Ojani R., Razmi H., Razavipanah I., High Catalytic Performance of Pt Nanoparticles via Support of Conducting Polymer for Electrooxidation of Methanol at Carbon Ceramic Electrode, J. Iran. Chem. Soc., 12: 667-676 (2015).
[7] Razavipanah I., Rounaghi Gh.H., Arbab Zavvar M.H., Electrochemical Preparation of Effective and Low Cost Catalyst for Electrooxidation of Ethanol, J. Iran. Chem. Soc., 10: 1279-1289 (2013).
[12] Habibi B., Delnavaz N., Carbon-Ceramic Supported Bimetallic Pt-Ni Nanoparticles as an Electrocatalyst for Oxidation of Formic Acid, Int. J. Hydrogen Energy, 36: 9581-9590 (2011).
[14]Raoof J.B., Hosseini S.R., Ojani R., Aghajani S., Fabrication of Bimetallic Cu/Pd Particles Modified Carbon Nanotube Paste Electrode and Its Use Towards Formaldehyde Electrooxidation, J. Mol. Liq., 204: 106-111 (2015).
[15] Yu Y., Su W., Yuan M., Fu Y., Hu J., Electrocatalytic Oxidation of Formaldehyde on Nickel Ion Implanted-Modified Indium Tin Oxide Electrode, J. Power Sources, 286: 130-135 (2015).
[16] Lei T., Zhang Sh., Li D., Zhang W., huang Sh., Xie Ch., The Influence of Au and Pt Electrodes on the Stability of TiO2 under UV Light Activation for Sensing Formaldehyde in Moisture Circumstances. Sens. Actuators, B, 19: 15-21 (2014).
[17] Jianga C., Chena H., Yua C., Zhanga S., Liua B., Kong J., Preparation of the Pt Nanoparticles Decorated Poly(N acetylaniline)/MWNTs Nanocomposite and Its Eelectrocatalytic Oxidation Toward Formaldehyde, Electrochim. Acta, 54: 1134-1140 (2009).
[18] Raoof J.B., Ojani R., Abdi S., Hosseini S.R., Highly Improved Electrooxidation of Formaldehyde on Nickel/poly (o toluidine)/Triton X-100 Film Modified Carbon Nanotube Paste Electrode, Int. J. Hydrogen Energy, 37: 2137-2146 (2012).
[22] Wang D., Wang J., Lu Sh., Jiang S.P., Facile Synthesis of Sub-Monolayer Sn, Ru, and RuSn Decorated Pt/Nanoparticles for Formaldehyde Electrooxidation, J. Electroanal. Chem., 712: 55-61 (2014).
[24] Yu Y., Wang T., Fu Y., Su W., Hu J., Platinum Nanoparticles Ion Implanted-Modified Indium Tin Oxide Electrode for Electrocatalytic Oxidation of Formaldehyde, Int. J. Hydrogen Energy, 39: 17617-17621 (2014).
[28] Ghosh Chaudhuri R., Paria S., Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications. Chem. Rev., 112: 2373-2433 (2012).
[29] Sieben J.M., Alvarez A.E., Comignani V., Duarte M.M.E., Methanol and Ethanol Oxidation on Carbon Supported Nanostructured Cu Core Pt-Pd Shell Electrocatalysts Synthesized via Redox Displacement, Int. J. Hydrogen Energy, 39: 11547-11556 (2014).
[30] Otoufi M.K., Shahtahsebebi N., Kompany A., Goharshadi E., A Systematic Growth of Gold Nanoseeds on Silica for Silica@Gold Core-Shell Nanoparticles and Investigation of Optical Properties,Int. J. Nano Dimension, 5: 525-531 (2014). 
[31] Gelali A., Solymani SH., Elahi M., Ghodseahi T., Zahrabi H., Vesaghi M. A., Ahmadi Rad M., Shafiekhani A., Ahmadpourian A., Fabrication of Cu-Ni Core-Shell Nanoparticles by CO Deposition of RF-PECVD and RF-Sputtering, Iran. J. Surf. Engineering, 11: 39-43 (2011).
[32] Zhong C. J., Maye M.M., Core–Shell Assembled Nanoparticles as Catalysts. Adv. Mater., 13: 1507-1511 (2001).
[33] Yang H., Platinum-Based Electrocatalysts with Core-Shell Nanostructures. Angew. Chem. Int. Ed., 50: 2674-2676 (2011).
[35] Long N.V., Yang Y., Thi C.M., Minhh N.V., Cao Y., Nogami M., The Development of Mixture, Alloy, and Core-Shell Nanocatalysts with Nanomaterial Supports for Energy Conversion in Low-Temperature Fuel Cells, Nano Energy, 2: 636-676 (2013).
[36] Luo J., Wang L., Mott D., Njoki P. N., Lin Y., He T., Xu Z., Wanjana B. N., Lim I. I. S., Zhong C. J., Core/Shell Nanoparticles as Electrocatalysts for Fuel Cell Reactions, Adv. Mater., 20: 4342-4347 (2008).
[37] Sánchez-Padilla N.M., Montemayor S.M., Torres L.A., Rodríguez Varela F.J., Fast Synthesis and Electrocatalytic Activity of M@Pt(M [ Ru, Fe3O4, Pd) Core-Shell Nanostructures for the Oxidation of Ethanol and Methanol, Int. J. Hydrogen Energy, 38: 12681-12688 (2013).
[39] Habibi B., Dadashpour E., Electrooxidation of
2-Propanol and 2-Butanol on the Pt–Ni Alloy Nanoparticles in Acidic Media,
Electrochim. Acta, 88: 157-164 (2013).
[40] Sánchez-Padilla N.M., Morales-Acosta D., Morales-Acosta M.D., Montemayor S. M., Rodríguez-Varela F.J., Catalytic Activity and Selectivity for the ORR of Rapidly Synthesized M@Pt (M [ Pd, Fe3O4, Ru) Core-Shell Nanostructures, Int. J. Hydrogen Energy, 39: 16706-16714 (2014).
[41] Li Z., He Ch., Cai M., Kang Sh., A Shen P.K., Strategy for Easy Synthesis of Carbon Supported Co@Pt Core-Shell Configuration as Highly Active Catalyst for Oxygen Reduction Reaction, Int. J. Hydrogen Energy, 37: 14152-14160 (2012).
[43] Padayachee D., Golovko V., Marshall A. T., The Effec of MnO2 Loadin on the Glycerol Electrooxidation Activi of Au/MnO2/C Catalysts, Electrochim. Acta, 98: 208-217 (2013).
[44] Yan Z., Meng H., Kang Shen P., Meng Y., Ji H., Effect of the Templates on the Synthesis of Hollow Carbon Materials as Electrocatalyst Supports for Direct Alcohol Fuel Cells, Int. J. Hydrogen Energy, 37: 4728-4736 (2012).
[45] Trasatti S., Petrii O.A., Real Surface Area Measurements in Electrochemistry, Pure Appl. Chem., 63: 711-734 (1991).
[46] ChaparroA.M., Martín A.J., Folgado M.A., Gallardo B., Daza L., Comparative Analysis of the Electroactive Area of Pt/C PEMFC Electrodes in Liquid and Solid Polymer Contact by Underpotential Hydrogen Adsorption/Desorption, Int. J. Hydrogen Energy, 34: 4838-4846 (2009).
[47] Camachoa B.R., Moraisa C., Valenzuela M.A., Alonso-Vantea N., Enhancing Oxygen Reduction Reaction Activity and Stability of Platinum via Oxide-Carbon Composites, Catal. Today, 202: 36-43 (2013).
[50] Xu W., Zhua Sh., Li Zh., Cui Zh., Yang X., Synthesis and Catalytic Properties of Pd Nanoparticles Loaded Nanoporous TiO2 Material, Electrochim. Acta, 114: 35-41 (2013).
[51] Qin Y.H., Yang H.H., Lva R.L., Wang W.G., Wang C.W., TiO2 Nanotube Arrays Supported Pd Nanoparticles for Ethanol Electrooxidation in Alkaline Media, Electrochim. Acta, 105: 372-277 (2013).
[52] Zhu J., Zhao X., Xiao M., Liang L., Liu Ch., Liao J., Xing W., The Construction of Nitrogen-Doped Graphitized, Carbon-TiO2 Composite to Improve the Electrocatalyst for Methanol Oxidation, Carbon, 72: 114-124 (2014).
[53] Liang R., Hu A., Persic J., Zhou Y.N., Palladium Nanoparticles Loaded on Carbon Modified TiO2 Nanobelts for Enhanced Methanol Electrooxidation, Nano-Micro Lett, 5: 202-212 (2013).
[54] Lin R., Cao Ch., Zhao T., Huang Zh., Li B., Wieckowski A., Ma J., Synthesis and Application of Coreeshell Co@Pt/C Electrocatalysts for Proton Exchange Membrane Fuel Cells, J. Power Sources, 223: 190-198 (2013).
[55] Santiago E.I., Varanda L.C., Villullas M.J., Carbon-Supported Pt-Co Catalyst Prepared by a Modified Polyol Process as Cathodes for PEM Fuel Cells, J. Phys. Chem. C, 111: 3146-3151 (2007).
[59] Ma C., Jin Y., Shi M., Chu Y., Xu Y., Jia W., Yuan Q., Chen J., Pan H., Dai Q., Highly Active Pd/WO3-CNTs Catalysts for Formic Acid Electrooxidation and Study of the Kinetics, Ionics, 20: 1419-1426 (2014).
[60] Wang Y., Wu B., Gao Y., Tang Y., Lu T., Xing W., Liu C., Kinetic Study of Formic Acid Oxidation on Carbon Supported Pd Electrocatalyst, J. Power Sources, 192: 372-375 (2009).
[61] Lović J.D., Tripković A.V., Gojković S. Lj., Popović K. Dj., Tripković D.V., Olszewski P., Kowal A., Kinetic Study of Formic Acid Oxidation on Carbon-Supported Platinum Electrocatalyst, J. Electroanal. Chem., 581: 294-302 (2005).
[62] Jovanović V.M., Tripković D., Tripković A., Kowal A., Stoch J., Oxidation of Formic Acid on Platinum Electrodeposited on Polished and Oxidized Glassy Carbon, Electrochem. Commun., 7: 1039-1044 (2005).
[63] Liu Y., Wang L., Wang G., Deng C., Wu B., Gao Y., High Active Carbon Supported PdAu Catalyst for Formic Acid Electrooxidation and Study of the Kinetics. J. Phys. Chem. C. 114: 21417-21422 (2010).
[64] Habibi E., Razmi H., Glycerol Electrooxidation on Pd, Pt and Au Nanoparticles Supported on Carbon Ceramic Electrode in Alkaline Media, Int. J. Hydrogen Energy, 37: 16800-16809 (2012).
[65] Rezaei M., Tabaian S. H., Fatmehsari Haghshenas D., The Role of Electrodeposited Pd Catalyst Loading on the Mechanisms of Formic Acid Electro-Oxidation. Electrocatalysis,5: 193-203 (2014).
[66] Lu H.T., Yang Z.J., Yang X., Fan Y., CeO2 Nanotubes Supported Pd Electrocatalysts for Formic Acid Oxidation. Electrocatalysis, 6: 255-262 (2015).
[67] Khorasani-Motlagh M., Noroozifar M., Ekrami-Kakhki M. S., Investigation of the Nanometals (Ni and Sn) in Platinum Binary and Ternary Electrocatalysts for Methanol Electrooxidation, Int. J. Hydrogen Energy, 36: 11554-11563 (2011).
[68] ÓSullivan E. J. M., White J. R., Electro‐Oxidation of Formaldehyde on Thermally Prepared RuO2 and Other Noble Metal Oxides. J. Electrochem. Soc., 136: 2576-2583 (1989).
[69] Brett C.M.A., Brett M.O., “Electrochemistry: Principles, Methods, and Applications”, Oxford University Press, Oxford, (2002).
[72] Kakati N., Maiti J., Lee S.H., Yoon Y.S., Core Shell Like Behavior of PdMo Nanoparticles on Multiwall Carbon Nanotubes and Their Methanol Oxidation Activity in Alkaline Medium, Int. J. Hydrogen Energy, 37: 19055-19064 (2012).
[73] Tan H., Ma X., Sheng L., An K., Yu L., Zhao H., Xu J., Ren W., Zhao X., Direct Synthesis of Few-Layer Graphene Supported Platinum Nanocatalyst for Methanol Oxidation, Jap. J. Appl. Phys, 11: 117101 (2014).
[74] Zhang Q., Pan D., Zhang H. Y., Han H.T.,
Synthesis of Platinum Nanoparticles with Higher Stability in Ionic Liquid-Nafion Film and Their Electrocatalytic Application, Micro & Nano Lett. 10: 198-201 (2015).