A Pair of Manganese(III) Schiff-Base Enantiomers: Synthesis, Crystal Structure and Magnetic Characterization

Document Type: Research Article


College of Chemical Engineering, Shandong University of Technology, Zibo 255049, CHINA


Based-on the quasi-planar tetra-dentate Schiff-base ligand, a pair of manganese(III) Schiff-base enantiomers formulated as {[Mn(R,R-3-MeOSalcy)(H2O)(CH3OH)]ClO4}2 (1) and {[Mn(S,S-3-MeOSalcy)(H2O)(CH3OH)]ClO4}2 (2) (3-MeOSalcy = N,N′-(1,2-cyclohexanediylethylene)bis(3-methoxysalicylideneiminato)dianion) have been synthesized and characterized by element analysis. Single X-ray structure analysis showed that the coordination sphere of the Mn(III) ion is an elongated octahedron with the four equatorial positions occupied by N2O2 unit from the Schiff-base ligand and two O atoms of the coordinated solvent molecules completing the additional two axial sites. The mononuclear manganese(III) Schiff-base compounds are self-complementary into a supramolecular dimer structure through the coordinated solvent ligand from one complex and the free O4 compartment from the neighboring complex. Investigation of the magnetic susceptibility of the manganese complexes reveals the overall weak antiferromagnetic interactions between the adjacent mental centers.


Main Subjects

[1] Sato O., Iyoda T., Fujishima A., Hashimoto K., Electrochemically Tunable Magnetic Phase Transition in a High-Tc Chromium Cyanide Thin Film, Science. 271: 49-51 (1996).

[2] Sato O., Iyoda T., Fujishima A., Hashimoto K., Photoinduced Magnetization of a Cobalt-Iron Cyanide, Science, 272: 704-705 (1996).

[3] Holmes S.M., Girolami G.S., Sol-Gel Synthesis of KVII[CrIII(CN)62H2O:  A Crystalline Molecule-Based Magnet with a Magnetic Ordering Temperature Above 100°C,, J. Am. Chem. Soc., 121: 5593-5994 (1999).

[4] Bartual-Murgui C., Salmon L., Akou A., Ortega-Villar N.A., Shepherd H.J., Muñoz M.C., Molnár G., Real J.A., Bousseksou A., Synergetic Effect of Host-Guest Chemistry and Spin Crossover in 3D Hofmann-like Metal-Organic Frameworks [Fe(bpac)M(CN)4] (M=Pt, Pd, Ni),  Chem. Eur. J., 18: 507-516 (2012).

[5] Jeon I.R., Calancea S., Panja A., Piñero Cruz D.M., Koumousi E.S., Dechambenoit P., Coulon C., Wattiaux A., Rosa P., Mathonière C., Clérac R., Spin Crossover or Intra-Molecular Electron Transfer in a Cyanido-Bridged Fe/Co Dinuclear Dumbbell: a Matter of State, Chem. Sci., 4: 2463-2470 (2013).

[6] Freedman D.E., Jenkins D.M., Iavarone A.T., Long J.R., A Redox-Switchable Single-Molecule Magnet Incorporating [Re(CN)7]3-,  J. Am. Chem. Soc., 130: 2884-2885 (2008).

[7] Goodwin A.L., Kennedy B.J., Kepert C., Thermal Expansion Matching via Framework Flexibility in Zinc Dicyanometallates, J. Am. Chem. Soc., 131: 34-35 (2009).

[8] Toma L.M., Lescouëzec R., Pasan J., Ruiz-Perez C., Vaissermann J., Cano J., Carrasco R., Wernsdorfer W., Lloret F., Julve M., [Fe(bpym)(CN)4]-: A New Building Block for Designing Single-Chain Magnets, J. Am. Chem. Soc., 128: 4842-4853 (2006).

[10] Imai H., Inoue K., Kikuchi K., Yoshida Y., Ito M., Sunahara T., Onaka S., Three-Dimensional Chiral Molecule-Based Ferrimagnet with Triple-Helical-Strand Structure. Angew, Chem. Int. Ed., 43: 5618-5621 (2004).

[11] Inoue K., Imai H., Ghalsasi P.S., Kikuchi K., Ohba M., Okawa H., Yakhmi J.V., A Three-Dimensional Ferrimagnet with a High Magnetic Transition Temperature (TC) of 53 K Based on a Chiral Molecule, Angew. Chem. Int. Ed., 40: 4242-4245 (2001).

[13] Bleuzen A., Marvaud V., Mathonière C., Sieklucka B., Verdaguer, M., Photomagnetism in Clusters and Extended Molecule-Based Magnets, Inorg. Chem., 48: 3453-3466 (2009).

[14] Kaye S.S., Long J.R., Hydrogen Storage in the Dehydrated Prussian Blue Analogues M3[Co(CN)6]2 (M = Mn, Fe, Co, Ni, Cu, Zn), J. Am. Chem. Soc. 127: 6506-6507 (2005).

[15] Beauvais L.G., Long J.R., Co3[Co(CN)5]2: A Microporous Magnet with an Ordering Temperature of 38 K, J. Am. Chem. Soc., 124: 12096-12097 (2002).

[16] Miyasaka H., Saitoh A., Abe S., Magnetic Assemblies Based on Mn(III) Salen Analogues, Coord, Chem. Rev., 251: 2622-2664 (2007).

[17] Shiga T., Newton G.N., Mathieson J.S., Tetsuka T., Nihei M., Cronin L., Oshio H., Ferromagnetically Coupled Chiral Cyanide-Bridged {Ni6Fe4} Cages, Dalton Trans., 39: 4730-4733 (2010).

[18] Ru J., Gao F., Wu T., Yao M.X., Li Y.Z., Zuo J.L., Enantiopure Heterobimetallic Single-Chain Magnets From the Chiral RuIII Building Block, Dalton Trans.43: 933-936 (2014).

[19] Liu C.M., Xiong R.G., Zhang D.Q., Zhu D.B., Nanoscale Homochiral C3-Symmetric Mixed-Valence Manganese Cluster Complexes with Both Ferromagnetic and Ferroelectric Properties, J. Am. Chem. Soc.132: 4044-4045 (2010).

[20] Gruselle M., Train C., Boubekeur K., Gredin P., Ovanesyan N., Enantioselective Self-Assembly of Chiral Bimetallic Oxalate-Based Networks, Coord. Chem. Rev., 250: 2491-2500 (2006).

[21] Hoshino N., Sekine Y., Nihei M., Oshio H., A Chiral Single Molecule Magnet and Chiral Single Chain Magnet, Chem. Commun., 46: 6117-6119 (2010).

[22] Wen H.R., Wang C.F., Li Y.Z., Zuo J.L., Song Y., You X.Z., Chiral Molecule-Based Ferrimagnets with Helical Structures, Inorg. Chem.45: 7032-7034 (2006).

[23] Yao M.X., Zheng Q., Cai X.M., Li Y.Z., Song Y., Zuo J.L., Chiral Cyanide-Bridged CrIII-MnIII Heterobimetallic Chains Based on [(Tp)Cr(CN)3]: Synthesis, Structures, and Magnetic Properties, Inorg. Chem.51: 2140-2149 (2012).

[24] Ru J., Gao F., Yao M.X., Wu T., Zuo J.L., Crystal Structures and Magnetic Properties of Chiral Heterobimetallic Chains Based on the Dicyanoruthenate Building Block, Dalton Trans. 43: 18047-18055 (2014).

[25] Zhang D.P., Bian Y Z., Qin J., Wang P., Chen X., The Supramolecular Interaction Mediated Chiral 1D Cyanide-Bridged Metamagnet: Synthesis, Crystal Structures and Magnetic Properties, Dalton Trans. 43: 945-949 (2014).

[26] Zhang D.P., Zhuo S.P., Zhang H.Y., Wang P., Jiang J.Z., Synthesis, Crystal Structures and Magnetic Properties of mer-Cyanideiron(III)-Based 1D Heterobimetallic Cyanide-Bridged Chiral Coordination Polymers,, Dalton Trans. 44: 4655-4664 (2015).

[28] Sheldrick G.M., SHELXTL97. "Program for the Refinement of Crystal Structure", University of Göttingen, Germany (1997).

[29] Plass W., Pahlmann A., Rautengarten J.,Magnetic Interactions as Supramolecular Function: Structure and Magnetic Properties of Hydrogen-Bridged Dinuclear Copper(II) Complexes, Angew. Chem. Int. Ed.,40: 4207-4210 (2001).

[30] Desplanches C., Ruiz E., Rodrgíuez-Fortea A., Exchange Coupling of Transition-Metal Ions through Hydrogen Bonding: A Theoretical Investigation, J. Am. Chem. Soc. 124: 5197-5205 (2002).

[31] Tang J.K., Coster J.S., Golobi A., Kozlevar B., Robertazzi A., Vargiu A.V., Gamez P., Reedijk J., Magnetic Coupling Between Copper(II) Ions Mediated by Hydrogen-Bonded (Neutral) Water Molecules, Inorg. Chem., 48: 5473-5479 (2009).

[33] Kahn O., "Molecular Magnetism"; VCH: Weinheim, Germany, (1993).

[35] Nastase S., Tuna F., Maxim C., Muryn C.A., Avarvari N., Winpenny Richard E.P., Andruh M., Supramolecular Dimers and Chains Resulting from Second Coordination Sphere Interactions,, Crystal Growth & Des., 7: 1825-1831 (2007).