Hydrothermal Synthesis of Flower-Like α-Quartz Nanostructures from Iran Kaolin

Document Type: Research Article


1 Department of Chemistry, Iran University of Science and Technology, Tehran, I.R. IRAN

2 Research Laboratory of Nanoporous Materials, Department of Chemistry, Iran University of Science and Technology, P.O. Box 16846-13114 Tehran, I.R. IRAN

3 Department of Chemistry, Islamic Azad University, Central Tehran Branch, P.O. Box 14169 63316 Tehran, I.R. IRAN


Over the past many years, synthesized silica (SiO2) has attracted wide attention because of its unique characteristics, such as low density, low thermal conductivity, high surface area, high thermal shock resistance and high specific strength. In this study, Flower-like α-quartz nano-structures have been synthesized through the hydrothermal method. The synthetic α-quartz powder was obtained using the feedstock of locally kaolin after 15 h. reaction at 180°C. The characterization of the product was investigated using X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Fourier Transform InfraRed (FT-IR) spectrometer. The FT-IR spectrum of the nano-crystalline powders confirms the presence of silica. SEM studies have revealed flower-like structures consisting of nano-sheets. In the synthetic quartz, most of the population is of nano-sized and lies between 1 µm to 15 µm. This developed method has many advantages such as synthesis at low temperature and desired pH to yield superior product of desired specification.  


Main Subjects

[1] Valtchev V., Tosheva L., Porous Nanosized Particles: Preparation, Properties, and Applications, Chem. Rev., 113: 6734-6760 (2013).

[2] Smyth, Joseph R. "Quartz" Adopt-a-Mineral Sample Paper. University of Colorado Boulder, n.d. Web. 3 Oct. 2014. Available online in: http://research.easybib.com.

[3] Smitha S., Shajesh P., Mukundan P., Nair T.D.R., Warrier K.G.K., Synthesis of Biocompatible Hydrophobic Silica–Gelatin Nano-Hybrid by Sol–Gel Process, J.Colloids and Surfaces B: Biointerfaces, 55: 38-43 (2007).

[4] Joseph Rathish R., Dorothy R., Joany R. M., Pandiarajan M., Corrosion Resistance of Nanoparticle Incorporated Nanocoatings, Eur. Chem. Bull., 2: 965-970 (2013).

[6] Kim S.-S., Kim H.-S., Kim S.G., Kim W.-S., Effect of Electrolyte Additives on Sol-Precipitated Nano Silica Particles, J. Ceramics international, 30: 171-175 (2004).

[7] Rahman I., Vejayakumaran P., Sipaut C., Ismail J., Abu Bakar M., Adnan R., Chee C., Effect of Anion Eectrolytes on the Formation of Silica Nanoparticles Via the Sol–Gel Process, J. Ceramics international, 32: 691-699 (2006).

[8] Cai Q., Luo Z.-S., Pang W.-Q., Fan Y.-W., Chen X.-H., Cui F.-Z., Dilute Solution Routes to Various Controllable Morphologies of MCM-41 Silica with a Basic Medium, J. Chem. Mater., 13: 258-263  (2001).

[9] Yu K., Guo Y., Ding X., Zhao J., Wang Z., Synthesis of Silica Nanocubes by Sol–Gel Method, J. Mater. Lett., 59: 4013-4015 (2005).

[10] Lee K.J., Seo K.W., Yu H.S., Mok Y.I., The Study on the Effective Factors of Hydrothermal Synthesis in Preparing High Quality Crystalline α-Quartz Powders, Korean J. Chem. Eng., 13: 489-495 (1996).

[11] Singh L., Agarwal S., Bhattacharyya S., Sharma U., Ahalawat S., Preparation of Silica Nanoparticles and Its Beneficial Role in Cementitious MaterialsJ. Nanomaterials Nanotechnology, 1: 44-51(2011).

[12] Ui S.-w., Choi I.-s., Choi S.-c., Synthesis of High Surface Area Mesoporous Silica Powder Using Anionic Surfactant, ISRN Materials Science, Int. Scholarly Res. Notices, 2014: 1-6 (2014).

[13] Hasegawa M., Kimata M., Shimane M., Shoji T., Tsuruta M., The Effect of Liquid Additives on Dry Ultrafine Grinding of Quartz, J. Powder Technol., 114: 145-151 (2001).

[14] Li L.J., Fang J.N., Lo H.J., Song S.R., Chen Y.L., Chen H.F., Lin I., A Preliminary Study on the Synthesis of Nano‐Sized Quartz, J. Chin. Chem. Soc., 50: 395-398 (2003).

[15] Shamsipur M., Bahrami Adeh N., Hajitarverdi M.S., Yazdimamagan M., Zarei F., Influence of Micro Silica an Mechanical Properties of Plasticized Sulur Composites, Iran. J. Chem. Chem. Eng. (IJCCE), 32(3): 1-7 (2013).

[16] Napierska D., Thomassen L., Lison D., Martens J.A., Hoet P.H., The Nanosilica Hazard: Another
Variable Entity
, J. Part Fibre Toxicol, 7: 39- (2010).

[17] Rittner M.N., Abraham T., The Nanostructured Materials Industry, Am. Ceram. Soc. Bull., 76 (6): 51-53 (1997).

[18] Bertone J.F., Cizeron J., Wahi R.K., Bosworth J.K., Colvin V.L., Hydrothermal Synthesis of Quartz  Nanocrystals, J. Nano Lett., 3: 655-659(2003).

[19] Doremus R.H., Roberts B., Turnbull D., "Growth and Perfection of Crystals", John Wiley, New York, (1958).

[20] Rıos S., Salje E., Redfern S., Nanoquartz vs. Macroquartz: a Study of the α↔ β Phase Transition, Eur. Phys. J. B., 20: 75-83(2001).

[21] Bergna H.E., Roberts W.O., "Colloidal Silica: Fundamentals and Applications", CRC Press, (2005).

[23] Lenart A., Bračko I., Plodinec M., Šturm S., Mirtič B., Formation Mechanism of α-Quartz from Opal-a
by Hydrothermal Synthesis
, J.Acta Mineralogica Petrographica, 7: 78 (2012).

[24] Kuriakose S., Bhardwaj N., Singh J., Satpati B., Mohapatra S., Structural, Optical and Photocatalytic Properties of Flower-Like ZnO Nanostructures Prepared by a Facile Wet Chemical Method, Beilstein j. nanotechnol., 4: 763-770 (2013).