Statistical Evaluation of the Pertinent Parameters in Bio-synthesis of Ag/MWf-CNT Composites Using Plackett-Burman Design and Response Surface Methodology

Document Type: Research Article

Authors

Materials and Energy Research Center, Meshkin Dasht, Karaj, I.R. IRAN

Abstract

Green chemistry - also called sustainable chemistry - as the cost-effective and environmentally friendly techniques have been gaining more attention recent years. Here, we introduced a fast, non-toxic and sustainable method to synthesize Ag nanoparticles. Various parameters are involved in the bio-synthesis of Ag nanoparticles/multi-walled carbon nanotubes (Ag/MWf-CNT) composites, including silver nitrate concentration, initial pH, temperature, CNT concentration, agitation time, biomass and stirring rate. The Plackett–Burman Design (PBD) approach indicated that the initial pH, the carbon nanotube concentration and the weight of biomass are the major effects of the Ag/MWf-CNT biosynthesis. A quadratic polynomial model was developed using Central Composite Design (CCD) to statistically evaluate the effect of the initial pH (3.5-7), the carbon nanotubes concentration (0.2-1 g/L) and the weight of wet biomass (6-16 g) on the response- reduction percentage of Ag ions. The significant factors and their interactions in the biosynthesis process were examined by means of analysis of variance (ANOVA). The results showed that the wet biomass weight has the most significant effect on the response compared to the other variables. Additionally, the model predicted that up to 89% of Ag+ reduction to Ag nanoparticles were obtained at the optimum range conditions– weight of biomass 13 g, the initial pH range 5.5-6.2 and concentration of carbon nanotubes 0.6 g/L.

Keywords

Main Subjects


[1] Raghunandan D., Borgaonkar P.A., Bendegumble B., Bedre M.D., Bhagawanraju M., Yalagatti M.S., Huh D.S., Abbaraju V., Microwave-Assisted Rapid Extracellular Bio-Synthesis of Silver Nanoparticles Using Carom Seed (Trachyspermumcopticum) Extract and in Vitro Studies, American Journal of Analytical Chemistry, 2(4):475-483 (2011).

[2] Ahmad I., Ahmad F., Pichtel J., "Microbes and Microbial Technology", Springer, ISBN 978-1-4419-7930-8, (2011).

[3] Dasa M.R., Sarmab R.K., Saikiab R, Kalec V.S., Shelkec M.V., Sengupta P., Synthesis of Silver Nanoparticles in an Aqueous Suspension of Graphene Oxide sheets and its Antimicrobial Activity, Colloids and Surfaces B: Biointerfaces, 83(1):16-22 (2011).

[4] Kamali M., Ghorashi S.A.A., Asadollahi M.A., Controllable Synthesis of Silver Nanoparticles Using Citrate as Complexing Agent: Characterization of Nanopartciles and Effect of pH on Size and Crystallinity, Iranian Journal of Chemistry and Chemical Engineering, (IJCCE), 31(4):21-28 (2012).

[5] Jung J.H., Hwang G.B., Lee J.E., Bae G.N., Preparation of Airborne Ag/CNT Hybrid Nanoparticles Using an Aerosol Process and Their Application to Antimicrobial Air Filtration, Langmuir, 27(16):10256-10264 (2011).

[6] Roy S., Mukherjee T., Chakraborty S., Das T.K., Bio-Synthesis, Characterisation and Antifungal Activityof Silver Nanoparticles Synthesized by the Fungus Aspergillus foetidus MTCC8876, Digest Journal of Nanomaterials and Biostructures; 8(1):197-205 (2013).

[7] Mohamed R.M., McKinney D.L., Sigmund W.M., Enhanced Nanocatalysts, Materials Science and Engineering R; 73(1):1-13 (2012).

[8] Liu L., Zhou F., Wang L., Qi X., Shi F., Deng Y., Low-Temperature CO Oxidation Over Supported Pt, Pd Catalysts: Particular Role of FeOx Support for Oxygen Supply During Reactions, Journal of Catalysis; 274(1):1-10 (2010).

[9] Yan W., Chen B., Mahurin S.M., Schwartz V., Mullins D.R., Lupini A.R., Pennycook S.J., Dai S., and Overbury S.H., Preparation and Comparison of Supported Gold Nano-Catalysts on Anatase, Brookite, Rutile, and P25 Polymorphs of TiO2 for Catalytic Oxidation of CO, The Journal of Physical Chemistry B; 109(21):10676-10685 (2009).

[10] Magnano E., Bondino F., Prato M., Verma S., Bianco A., Formation of Efficient Catalytic Silver Nanoparticles on Carbon Nanotubes by Adenine Functionalization, Angewandte Chemie International Edition, 50(42): 9893–9897 (2011).

[11] Zhao Y., Li J., Wu C., Guan L., A General Strategy for Synthesis of Metal Oxide Nanoparticles Attached on Carbon Nanomaterials, Nanoscale Research Letters; 6:71-75 (2011).

[12] Ong T.Y., Ahmad A.L., Sharif Zein S.H., Tan S.H., A Review on Carbon Nanotubes in an Environmental Protection and Green Engineering Perspective, Brazilian Journal of Chemical Engineerin, 27: 227-242 (2010).

[14] Yuan W., Jiang G., Che J., Qi X., Xu R., Chang M.W., Chen Y., Lim S.Y., Dai J., Chan-Park M.B., Deposition of Silver Nanoparticles on Multiwalled Carbon Nanotubes Grafted with Hyperbranched Poly (amidoamine) and Their Antimicrobial Effects, The Journal of Physical Chemistry C; 112:18754–18759 (2008).

[15] Tavasoli A., Karimi S., Nikookar H., Fadakar H., Molybdenum Loading Effects on the Physico-Chemical Properties and Performance of Carbon Nanotubes Supported Alkalized MoS2 Catalysts for Higher Alcohols Synthesis, Iranian Journal of Chemistry and Chemical Engineering, (IJCCE), 32(1):11-19 (2013).

[16] Bhainsa K.C., D’Souza S.F., Extracellular Bio-synthesis of Silver Nanoparticles Using the fungus Aspergillus fumigates, Colloids and Surfaces B: Biointerfaces; 47:160-164 (2006).

[17] Vigneshwaran N., Ashtaputre N.M., Varadarajan P.V., Nachane R.P., Paralikar K.M., Balasubramanya R.H., Biological Synthesis of Silver Nanoparticles Susing the Fungus Aspergillus flavus, Materials Letters, 61:1413-1418 (2007).

[18] Sastry M., Ahmad A., Khan M.I., Kumar R., Bio-Synthesis of Metal Nanoparticles Using Fungi and Actinomycete, Current Science, 85(2):162-170 (2003).

[19] Salunkhe R.B., Patil S.V., Salunke B.K., Patil C.D., Sonawane A.M., Studies on Silver Accumulation and Nanoparticles Synthesis by Cochlioboluslunatus, Applied Biochemical Biotechnology, 165(1):221:234 (2011).

[20] Jaidev L.R., Narasimha G., Fungal Mediated Bio-Synthesis of Silver Nanoparticles, Characterization and Antimicrobial Activity, Colloids and Surfaces B: Biointerfaces; 81:430-433 (2010).

[21] Park H.S., Hwang J.Y., Shin U.S., Kim H.W., Gong M.S., Positively Charged Silver Nanoparticles Threaded on Carbon Nanotube for the Efficient Delivery of Negatively Charged Biomolecules, Bulletin of Korean Chemical Society; 32(10):3581-3586 (2011).

[22] Manea F., Motoc S., Pop1 A., Remes A., Schoonman J., Silver-Functionalized Carbon Nanofiber Composite Electrodes for Ibuprofen Detection, Nanoscale Research Letters, 7:331-334 (2012).

[23] Fam D.W.H., Tok A.I.Y., Al. Palaniappan, Nopphawan P., Lohani A., Mhaisalkar S.G., Selective Sensing of Hydrogen Sulphide Using Silver Nanoparticle Decorated Carbon Nanotubes, Sensors and Actuators B, 138:189-192 (2009).

[26] Chaibakhsh N., Basri M., Anuar S.H.M., Rahman M.B.A., Rezayee M., Optimization of Enzymatic Synthesis of Eugenol Ester Using Statistical Approaches, Biocatalysis and Agricultural Biotechnology, 1: 226-231 (2012).

[27] Haghshenas D.F., Bonakdarpour B., Alamdari E.K., Nasernejad B., Optimization of Physicochemical Parameters for Bioleaching of Sphalerite by Acidithiobacillus Ferrooxidans Using Shaking Bioreactors, Hydrometallurgy, 111:22-28 (2012).

[28] Aghaiea E., Pazouki M., Hosseini M.R., Ranjbara M., Ghavipanjeh F., Response Surface Methodology (RSM) Analysis of Organic Acid Production for Kaolin Beneficiation by Aspergillus Niger, Chemical Engineering Journal, 147:245-251 (2009).

[29] Ahmad A.L., Oh P.C., Shukor S.R.A., Synthesis of 2-oxo-4-phenylbutanoic Acid: Parameter Optimization Using Response Surface Methodology, Chemical Engineering Journal. 171:640-645 (2011).

[30] Dos J.P., Fernandes S., Carvalho B.S., Luchez C.V., Politi M.J., Brandt C.A., Optimization of the Ultrasound-Assisted Synthesis of Allyl 1-Naphthyl Ether Using Response Surface Methodology, Ultrasonics Sonochemistry, 18:489-493 (2011).

[31] Navazi Z.R., Pazouki M., Halek F.S., Investigation of Culture Conditions for Bio-Synthesis of Silver Nanoparticles Using Aspergillus fumigates, Iranian Jourrnal of Biotechnology, 8(1):56-61 (2010).

[32] Pazouki M., Hussainnia A., Shayegan J., Banifathemi M., Decolorization of Distillery Wastewater by UV Irradiated Spores of Aspergillus fumigates, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 2(2):49-55 (2005).

[33] Yousefi N., Pazouki M., Alizadeh M., Hesari F.A., Bio-synthesis of Ag/MWf-CNT Nano-composites Using Aspergillus Fumigatus as the CO Oxidation Catalyst, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 46(3): 464-470 (2016).

[34] Montgomery D.C., "Design and analysis of experiments", John Wily& Sons, INC, 6th Edition, New York (2005).

[35] Ahmadi S., Manteghian M., Kazemian H., Rohani S., Towfighi Darian J., Synthesis of Silver Nano Catalyst by Gel-Casting Using Response Surface Methodology, Powder Technology, 228:163-170 (2012).

[36] Sadowski Z., Maliszewska I.H., Grochowalska B., Polwczyk I., Kozlecki T., Synthesis of Silver Nanoparticles Using Microorganisms, Materials Science-Poland, 26(2):419-424, (2008).

[38] Pazouki M., Hussainnia A., Moztarzadeh F., Banifathemi M., Application of Response Surface Methodology for Optimization of Important Parameters in Decolorizing Treated Distillery Wastewater Using Aspergillus fumigatus UB2 60, Biodeterioration and Biodegradation Journal, 57(4):195-199 (2006).

[40] Ahmar H., Tabani H., Koruni M.H., Davarani S.S.H., Fakhari A.R., A New Platform for Sensing Urinary Morphine Based on Carrier Assistedelectro Membrane Extraction Followed by Adsorptive Stripping Voltammetric Detection on Screen-Printed Electrode, Biosensors and Bioelectronics, 54:189-194 (2014).

[42] Salamatinia B., Hashemizadeh I., Ahmad Z.A., Alkaline Earth Metal Oxide Catalysts for Biodiesel Production from Palm Oil: Elucidation of Process Behaviors and Modeling Using Response Surface Methodology, Iranian Journal of Chemistry and Chemical Engineering, (IJCCE), 32(1):113-126 (2013).

[43] De Vries R.P., Visser J., Aspergillus Enzymes Involved in Degradation of Plant Cell Wall Polysaccharides, Microbiology and Molecular Biology Reviews, 65(4):497-522 (2001).

[44] Oyeleke S.B., Egwim E.C., Auta S.H., Screening of Aspergillus flavus and Aspergillus fumigatus Strains for Extracellular Screening of Aspergillus Protease Enzyme Production, Journal of Microbiology and Antimicrobial, 2(7):83-87 (2010).

[45] Stewart J.C., Parry J.B., Factors Influencing the Production of Cellulase by Aspergillus fumigatus (Fresenius), Journal of General Microbiology, 125:33-39 (1981).

[46] Hussin A.S.M., Farouk A.E.A., Greiner R., Optimization of Cultivation Conditions for the Production of Phytate-Degrading Enzymes by Enterobacter Sakazakii ASUIA279 Isolated from Malaysian Maize Root, Journal of Biotechnology and Biodiversity, 3(2):1-10 (2012).

[48] Galondea N., Brostauxb Y., Richarda G., Notta K., Jerômed C., Fauconnier M.L., Use of Response Surface Methodology for the Optimization of the Kipase-Catalyzed Synthesis of Mannosyl Myristate in Pure Ionic Liquid, Process Biochemistry, 48:1914-1920 (2013).