Chemical Investigation and Protective Effects of Bioactive Phytochemicals from Artemisia ciniformis

Document Type: Research Article


Department of Chemistry, College of Science, Takestan Branch, Islamic Azad University, Takestan, I.R. IRAN


The present study evaluates the phytochemical constituents, antimicrobial, antioxidant capacity, total phenolic content, ferrous ion chelating, tyrosinase inhibition, superoxide anion and nitric oxide radical scavenging activity of the leaf essential oil of Artemisia ciniformis Krasch. & Popov ex Poljakov.,from Iran. Oxygenated monoterpenes (92.4%), especially camphor (32.2%), 1,8-cineole (22.4%) and trans-pinocarveol (16.8%) were the major components identified in this essential oil. Bactericidal kinetic of the essential oil of A. ciniformis indicated that Acinetobacter baumannii is the most vulnerable (MIC = 0.02 and MBC = 0.04 mg/ml, D value = 3.57 min). The total phenol content of the essential oil of A. ciniformis was estimated to be 206.20 ± 4.58μg GAE/mg of the essential oil.The ferric reducing power of A. ciniformis essential oil was determined 0.315 ± 0.08 gallic acid equivalent (mg/g).The essential oil of A. ciniformis exhibited a dose-dependent scavenging of DPPH, nitric oxide and superoxide anion radicals with IC50 values of 10.75 mg/mL, 10.63 µg and 16.81 µg, respectively. In the β-carotene-linoleic acid test system, oxidation of linoleic acid was effectively inhibited by A. ciniformis essential oil (86.39 ± 2.53%, 0.625 mg/mL essential oil). There was no correlation between ferrous ion chelating activity (IC50 = 220.90 µg) and total phenolics implying that the essential oil contains no chelating ligands. Anti-tyrosinase activity of A. ciniformis essential oil at 50% concentration (IC50) was 6.53 mg.The leaf essential oil of A. ciniformis may be exploited as a natural source of bioactive phytochemicals bearing antimicrobial and antioxidant potentials.


Main Subjects

[1]Haddadi H., Alizadeh N., Shamsipur M., Stoichiometric and Free Radical-Scavenging Kinetic Studies of Extractable Polyphenols from Pomegranate Husk and Pistachio Hull, J. Iran. Chem. Soc., 8(3): 694-707 (2011).

[2] Lim Y.Y., Lim T.T., Tee J.H., Antioxidants Properties of Guava Fruits: Comparison Studies with Some Local Fruits, Sunway Acad. J., 3: 9-20 (2006).

[3] Rechinger K.H., Artemisia. In: "Flora Iranica Compositae, No. 158", Rechinger KH and IC Hedge (Eds.), Akademische Druck und Verlagsanstalt, Gras, Austria (1986).

[4] Mozaffarian V.A., "Dictionary of Iranian Plant Names", Farhang Moaser, Tehran (1996).

[5] Rustaiyan A., Masoudi S., Chemical Composition and Biological Activities of Iranian Artemisia Species, Phytochem. Lett., 4(4): 440-447 (2011).

[6]Adams R.P., "Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy", Allured Publishing Corp, Carol Stream, IL (2001).

[8] Rasooli I., Mirmostafa S.A., Bacterial Susceptibility to and Chemical Composition of Essential Oils from Thymus kotschyanus and Thymus persicus. J. Agric. Food Chem., 51(8): 2200-2205 (2003).

[9] Kahkonen M.P., Hopia A.I., Vuorela H.J., Rauha J.P., Pihlaja K., Kujala T.S., Heinonen M., Antioxidant Activity of Plant Extracts Containing Phenolic Compounds, J. Agric. Food. Chem., 47(10): 3954-3962 (1999).

[10] Lim T.Y., Lim Y.Y., Yule C.M., Evaluation of Antioxidant, Antibacterial and Anti-Tyrosinase Activities of Four Macaranga Species, Food Chem., 114(2): 594-599 (2009).

[11] Yadegarinia D., Gachkar L., Rezaei M.B., Taghizadeh M., Astaneh S.A., Rasooli I., Biochemical Activities of Iranian Mentha piperita L. and Myrtus communis L. Essential Oils, Phytochemistry, 67(12): 1249-1255 (2006).

[12] Taga M.S., Miller E.E., Pratt D.E., Chia Seeds as a Source of Natural Lipid Antioxidant, J. Am. Oil Chemists. Soc., 61(5): 928-931 (1984).

[13] Chan E.W.C., Lim Y.Y., Wong L.F., Lianto F.S., Wong S.K., Lim K.K., Joe C.E., Lim T.Y., Antioxidant and Tyrosinase Inhibition Properties of Leaves and Rhizomes of Ginger Species, Food Chem., 109(3): 477-483 (2008).

[14] Lee J.C., Kim H.R., Kim J., Jang Y.S., Antioxidant Property of an Ethanol Extract of the Stem of Opuntia ficus-indica var. Saboten, J. Agric. Food Chem., 50(22): 6490-6496 (2002).

[15] Marcocci L., Maguire J.J., Droy-Lefaix M.T., Packer L., The Nitric Oxide-Scavenging Properties of Ginkgo biloba Extract EGb 761, Biochem. Biophys. Res. Commun., 201(2): 748-755 (1994).

[16] Firouzni A., Vahedi H., Sabbaghi F., Bigdeli M., Composition of the Essential Oil of Artemisia ciniformis, A. kopetdaghensis, and A. khorasanica in Iran, Chem. Nat. Comp., 44(6): 804-806 (2008).

[17] Torel J., Cillard J., Cillard P., Antioxidant Activity of Flavonoids and Reactivity with Peroxy Radical, Phytochemistry, 25(2): 383-385 (1986).

[18] Huang D., Boxin O.U., Prior R.L., The Chemistry Behind Antioxidant Capacity Assays, J. Agric. Food Chem., 53(6): 1841-1856 (2005).

[19] Yamaguchi T., Takamura H., Matoba T., Terato J., HPLC Method for Evaluation of the Free Radical-Scavenging Activity of Foods by Using 1,1-Diphenyl-2-Picrylhydrazyl, Biosci. Biotechnol. Biochem., 62(6): 1201-1204 (1998).

[20] Ho S.C., Tsai T.H., Tsai P.J., Lin C.C., Protective Capacities of Certain Spices Against Peroxynitrite-Mediated Biomolecular Damage, Food Chem. Toxicol., 46(3): 920-928 (2008).

[21] Dragland S., Senoo H., Wake K., Holte K., Blomhoff R., Several Culinary and Medicinal Herbs are Important Sources of Dietary Antioxidants, J. Nutr., 133(5): 1286-1290 (2003).

[22] Shan B., Cai Y.Z., Sun M., Corke H., Antioxidant Capacity of 26 Spice Extracts and Characterization of Their Phenolic Constituents, J. Agric. Food Chem., 53(20): 7749-7759 (2005).

[23] Mammadov R., Makasçı Afacan A., Uysal Demir D., Görk Ç., Determination of Antioxidant Activities of Different Urginea maritima (L.) Baker Plant Extracts, Iran. J. Chem. Chem. Eng. (IJCCE), 29(3): 47-53 (2010).

[24] Mammadov R., Ili P., Ertem Vaizogullar H., Afacan Makascı A., Antioxidant Activity and Total Phenolic Content of Gagea Fibrosa and Romulea ramiflora, Iran. J. Chem. Chem. Eng. (IJCCE), 30(3): 57-62 (2011).

[25] Ashutosh K., Nitric Oxide and Asthma: A Review, Curr. Opin. Pulm. Med., 6: 21-25 (2000).

[26] Nabavi S.M., Ebrahimzadeh M.A., Nabavi S.F., Hamidinia A., Bekhradnia A.R., Determination of Antioxidant Activity, Phenol and Flavonoids Content of Parrotia persica Mey, Pharmacology online, 2: 560-567 (2008a).

[27] Nabavi S.M., Ebrahimzadeh M.A., Nabavi S.F., Jafari M., Free Radical Scavenging Activity and Antioxidant Capacity of Eryngium caucasicum Trautv and Froripia subpinnata, Pharmacology online, 3: 19-25 (2008b).

[28] Haraguchi H., Ishikawa H., Mizutani K., Tamura Y., Kinoshita T., Antioxidative and Superoxide Scavenging Activities of Retrochalcones in Glycyrrhiza inflate, Bioorganic & Medicinal Chem., 6(3): 339-347 (1998).

[29] Gulcin I., Uguz M., Oktay M., Evaluation of the Antioxidant and Antimicrobial Activities of Cclary Sage (Salvia sclarea L.), Turk. J. Agric. For., 28: 25-33 (2004).

[30] Lloyd R.V., Hanna P.M., Mason R.P., The Origin of the Hydroxyl Radical Oxygen in the Fenton Reaction, Free Radical. Bio. Med., 22(5): 885-888 (1997).

[31] Che Othman S.F., Idid S.Z., Suleiman Koya M., Mohamed Rehan A., Rahim Kamarudin K., Antioxidant Study of Garlic and Red Onion: A Comparative Study, Pertanika. J. Trop. Agric. Sci., 34(2): 253-261 (2011).

[32] Amin E., Saboury A.A., Mansuri-Torshizi H., Moosavi-Movahedi A.A., Potent Inhibitory Effects of Benzyl and p-xylidine-bisdithiocarbamate Sodium Salts on Activities of Mushroom Tyrosinase, J. Enzyme. Inhibit. Med. Chem., 25(2): 272-281 (2010).

[33] Momtaz S., Mapunya B.M., Houghton P.J., Edgerly C., Hussein A., Naidoo S., Lall N., Tyrosinase Inhibition by Extracts and Constituents of Sideroxylon inerme L. Stem Bark, Used in South Africa for Skin Lightening, J. Ethnopharmacol., 119(3): 507-512 (2008).

[34] Slominski A., Tobin D.J., Shibahara S., Wortsman J., Melanin Pigmentation in Mammalian Skin and Its Hormonal Regulation, Physiol. Rev., 84(4): 1155-1228 (2004).