Prediction of the Liquid Vapor Pressure Using the Artificial Neural Network-Group Contribution Method

Document Type: Research Article

Author

Department of Chemical Engineering, University of Tabriz, Tabriz, I.R. IRAN

Abstract

In this paper, vapor pressure for pure compounds is estimated using the Artificial Neural Networks and a simple Group Contribution Method (ANN–GCM). For model comprehensiveness, materials were chosen from various families. Most of materials are from 12 families. Vapor pressure data of 100 compounds is used to train, validate and test the ANN-GCM model. Vapor pressure data were taken from literature for wide ranges of temperature (68.55-559.15 K). Based on results, the best structure for feed-forward back propagation neural network is Levenberg-Marquardt back propagation training algorithm, logsig transfer function for hidden layer and linear transfer function for output layer. The multiplayer network model consists of temperature, acentric factor, critical temperature, critical pressure and the structure of molecules as inputs, 10 neurons in the hidden layer and one neuron in the output layer corresponding to vapor pressure. The weights are optimized to minimize error between experimental and calculated data. Results show that optimum neural network architecture is able to predict vapor pressure data with an acceptable level. The trained network predicts the vapor pressure data with average relative deviation percent of 1.18%.

Keywords

Main Subjects


[1] Gandhidasan P., Mohandes M.A., Predictions of Vapor Pressures of Aqueous Desiccants for Cooling Applications by Using Artificial Neural Networks, Appl. Therm. Eng., 28: 126-135 (2008).

[2] Peng D.Y., Robinson D.B., A New Two-Constant Equation of State, Ind. Eng. Chem. Fundamen., 15: 59-64 (1976).

[3] Soave G., Equilibrium Constants from a Modified Redlich–Kwong Equation of State, Chem. Eng. Sci., 27: 1197-1203 (1972).

[4] Patel N.C., Teja A.S., A New Cubic Equation of State for Fluids and Fluid Mixtures, Chem. Eng. Sci., 37: 463-473 (1982).

[5] Tu C.H., Group-contribution Method for the Estimation of Vapor Pressures, Fluid Phase Equilib., 99: 105-120(1994).

[7] Marrero J., Gani R., Group-Contribution Based Estimation of Pure Component Properties, Fluid Phase Equilib., 183: 183-208 (2001).

[8] Coutsikos P., Voutsas E., Magoulas K., Tassios D.P., Prediction of Vapor Pressures of Solid Organic Compounds with a Group-Contribution Method, Fluid Phase Equilib., 207: 263-281 (2003).

[9] Moller B., Rarey J., Ramjugernath D., Estimation of the Vapour Pressure of Non-electrolyte Organic Compounds via Group Contributions and Group Interactions, J. Mol. Liq., 143: 52-63 (2008).

[11] Ceriani R., Gani R., Liu Y.A., Prediction of Vapor Pressure and Heats of Vaporization of Edible Oil/Fat Compounds by Group Contribution, Fluid Phase Equilib., 337: 53-59 (2013).

[12] Ehsani M., Bateni H., Razi Parchikolaei G., Modeling of Oxidative Coupling of Methane over Mn/Na2WO4/ SiO2 Catalyst Using Artificial Neural Network, Iran. J. Chem. Chem. Eng. (IJCCE), 32(3): 107-114 (2013).

[13] Ahadian S., Moradian S., Mohseni, M. Determination of Surface Tension and Viscosity of Liquids by the Aid of the Capillary Rise Procedure Using Artificial Neural Network (ANN), Iran. J. Chem. Chem. Eng. (IJCCE), 27(1): 7-15 (2008).

[14] Potukuchi S., Wexler A.S., Predicting Vapor Pressures of Volatile Inorganic Components using Neural Networks, "14th Nucleation and Atmospheric Aerosols", p. 651 (1996).

[16] Potukuchi W., Wexler A.S., Predicting Vapor Pressure using Neural Networks, Atmos. Environ., 31: 741-753 (1997).

[19] Lazzus J.A., ρ–T–P Prediction for Ionic Liquids Using Neural Networks, J. Taiwan Inst. Chem. E., 40: 213-232 (2009).

[20] Rohani A.A., Pazuki G., Najafabadi H.A., Seyfi S., Vossoughi M., Comparison between the Artificial Neural Network System and SAFT Equation in Obtaining Vapor Pressure and Liquid Density of Pure Alcohols, Expert Syst. Appl., 38: 1738-1747      (2011).

[23] Iliuta M.C., Iliuta I., Larachi F., Vapour-Liquid Equilibrium Data Analysis for Mixed Solvent-Electrolyte Systems Using Neural Network Models, Chem. Eng. Sci., 55: 2813-2825 (2000).

[24] Miyamoto H., Takemura J., Uematsu M., Vapour Pressures of Isobutane at T=(310 to 407) K, J. Chem. Thermodyn., 36: 919-923 (2004).

[25] Miyamoto H., Uematsu M., Measurements of Vapour Pressures and Saturated-Liquid Densities  for n-Butane at T = (280 to 424) K, J. Chem. Thermodyn., 39: 827-832 (2007).

[26] Ewing M.B., Sanchez Ochoa J.C., The Vapour Pressures of n-Octane Determined Using Comparative Ebulliometry, Fluid Phase Equilib., 210: 277-285 (2003).

[27] N’Guimbi J., Berro C., Mokbel I., Rauzy E., Jose J., Experimental Vapour Pressures of 13 Secondary and Tertiary Alcohols-Correlation and Prediction by a Group Contribution Method, Fluid Phase Equilib., 162: 143-158 (1999).

[28] Censky M., Rohac V., Ruzicka K., Fulem M., Aim K., Vapor Pressure of Selected Aliphatic Alcohols by Ebulliometry. Part 1, Fluid Phase Equilib., 298: 192-198 (2010).

[30] Falleiro R.M.M., Silva L.Y.A., Meirelles A.J.A., Krähenbühl M.A., Vapor Pressure Data for Fatty Acids Obtained using an Adaptation of the DSC Technique, Thermochim. Acta, 547: 6-12 (2012).

[31] Cervantes M.C., Mokbel I., Champion D., Jose J., Voilley, A. Saturated Vapour Pressure of Aaroma Compounds at Various Temperatures, Food Chem., 85: 221-229 (2004).

[32] Shi L., Duan Y.Y., Zhu M.S., Han L.Z., Lei X., Vapor Pressure of 1,1,1,2,3,3,3-Heptafluoropropane, Fluid Phase Equilib., 163: 109-117 (1999).

[34] A.H.N. Mousa, Vapour Pressure and Saturated-Vapour Volume of Acetonitrile, J. Chem. Thermodyn., 13: 201-202 (1981).

[35]  Felsing W.A., Durban S.A., The Vapor Pressure, Densities, and Some Derived Quantities for Acetone, J. Am. Chem. Soc., 48: 2885-2893 (1926).

[44] Daubert T.E., Jalowka J.W., Goren V., Vapor Pressure of 22 Pure Industrial Chemicals, AIChE Symp. Ser., 83: 128-156 (1987).

[46] Dever D.F., Finch A., Grunwald E., The Vapor Pressure of Methanol, J. Phys. Chem., 59: 668-669 (1955).

[47] Gibbard H.F., Creek J.L., Vapor Pressure of Methanol from 288.15 to 337.65 K, J. Chem. Eng. Data, 19: 308-310 (1974).

[48] Fowler L., Trump W.N., Vogler C.E., Vapor Pressure of Naphthalene. Measurements between 40 deg and 180 deg, J. Chem. Eng. Data, 13: 209-210 (1968).

[50] Rintelen J.C., Saylor J.H., Gross P.M., The Densities and Vapor Pressures of some Alkylbenzenes, Aliphatic Ketones and n-Amyl Chloride, J. Am. Chem. Soc., 59: 1129-1130 (1937).

[51] Kassel L.S., Vapor Pressures of the Xylenes and Mesitylene, J. Am. Chem. Soc., 58: 670-671 (1936).

[53] Lee F.M., Coombs D.M., Two-Liquid-Phase Extractive Distillation for Aromatics Recovery, Ind. Eng. Chem. Res., 26: 564-573 (1987).

[54] Bryson C.E., Cazcarra V., Levenson L.L., Sublimation Rates and Vapor Pressures of H2O, CO2, N2O, and Xe, J. Chem. Eng. Data, 19: 107-110 (1974).

[57] Barnett F.D., Harvey N.D., Vapor Pressure of Liquid Oxygen and Nitrogen, J. Am. Chem. Soc., 49: 610-620 (1927).

[59] Bejarano A., Poveda L.J., de la Fuente J.C., Supplementary Vapor Pressure Data of the Glycol Ethers, 1-methoxy-2-propanol, and 2-methoxyethanol at a Pressure Range of (15 to 177) kPa, J. Chem. Thermodyn., 53: 114-118 (2012).

[60] Bejarano A., Quezada N., de la Fuente J.C., Complementary Vapor Pressure Data for 2-methyl-1-propanol and 3-methyl-1-butanol at a Pressure Range of (15 to 177) kPa, J. Chem. Thermodyn., 41: 1020-1024 (2009).

[62] Gregorowicz J., Kiciak K., Malanowski S., Vapour Pressure Data for 1-butanol, Cumene, n-octane and n-decane and Their Statistically Consistent Reduction with the Antoine Equation, Fluid Phase Equilib., 38: 97-107 (1987).

[63] Rohac V., Ruzicka K., Ruzicka V., Zaitsau D.H., Kabo G.J., Diky V., Aim K., Vapour Pressure of Diethyl Phthalate, J. Chem. Thermodyn., 36: 929-937 (2004).

[64] Sawaya T., Mokbel I., Rauzy E., Saab J., Berro C., Jose J., Experimental Vapor Pressures of Alkyl and Aryl Sulfides Prediction by a Group Contribution Method, Fluid Phase Equilib., 226: 283-288 (2004).

[65] Fu Y., Han L., Zhu M.S., PVT Properties, PVT Properties, Vapor Pressures and Critical Parameters of HFC-32, Fluid Phase Equilib., 111: 273-286 (1995).

[66] Cui X., Chen G., Han X., Wang Q., Experimental Vapor Pressure Data and a Vapor Pressure Equation for Fuoroethane (HFC-161), Fluid Phase Equilib., 245: 155-157 (2006).

[67] Feng X., Xu X., Lin H., Duan Y., Vapor Pressures of 1,1,1,2,3,3,3-heptafluoropropane, 1,1,1,3,3,3-hexafluoropropane and 1,1,1,3,3-pentafluoropropane, Fluid Phase Equilib., 290: 127-136 (2010).

[68] Ambrose, D. Ellender J.H., Lees E.B., Sprake C.H.S., Townsend R., Thermodynamic Properties of Organic Oxygen Compounds XXXVIII. Vapour Pressures of Some Aliphatic Ketones, J. Chem. Thermodyn., 7: 453-472 (1975).

[69] Weber L.A., Ebulliometric Measurement of the Vapor Pressures of R123 and R141b, Fluid Phase Equilib., 80: 141-143 (1992).

[70] Farkova J., Wichterle I., Vapour Pressures of Some Ethyl and Propyl Esters of Fatty Acids, Fluid Phase Equilib., 90: 143-148 (1993).

[71] Straty G.C., Tsumura R., PVT and Vapor Pressure Measurements on Ethane, J. Res. Nbs. A Phys. Ch., 80: 35-39 (1976).

[72] Duan Y.Y., Zhu M.S., Han L.Z., Experimental Vapor Pressure Data and a Vapor Pressure Equation for Trifluoroiodomethane (CF3I), Fluid Phase Equilib., 121: 227-234 (1996).

[73] Reid R.C., Prausnitz J.M., Poling B.E., "The Properties of Gases and Liquids", 4th ed., McGraw-Hill Book Company, New York (1987).

[74] Perry, D. Green (Eds.), "Perry's Chemical Engineers Handbook", 7th Edition, McGraw-Hill, New York (1997).

[75] The Dortmund Data Bank, http://www.ddbst.com/.