A Novel Carbon Paste Electrode for Potentiometric Determination of Vanadyl Ion

Document Type: Research Article

Authors

1 Department of Chemistry, Faculty of Samen Hojaj, Technical and Vocational University, Tehran, I.R. IRAN

2 Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, I.R. IRAN

3 Department of Biochemistry, National Research Institute for Genetic Engineering and Biotechnology, Tehran, I.R. IRAN

4 Department of Chemistry, Neyshabour Science and Research Branch, Islamic Azad University, Neyshabur, I.R. IRAN

Abstract

Carbon paste electrode was modified by disodium 2,4-diamino-7-methylbenzo[g] pteridine-5,10-dioxide to fabricate a sensor for potentiometric determination of vanadyl ion (VO2+) in aqueous medium. The new ligand was synthesized in three steps with high yield. The optimal composition of the carbon paste was made of graphite powder (64.5%), ionophore (16.6%), paraffin oil (17.8%), and sodium tetraphenylborate (NaTPB, 1.1%). The electrode exhibited a constant sensitivity of 30.20 ± 0.5 mV to VO2+ ions over a concentration range of 5 mM to 1 mM. The detection limit was calculated to be 5 mM with a response time of less than 35 s. The electrode showed to be highly reproducible over a period of 3 weeks. This sensor exhibits high selectivity to VO2+ ions and was successfully employed for potentiometric titration of VO2+ ions with EDTA.

Keywords

Main Subjects


 [1] Taylor M.J.C., Van Staden J.F., Spectrophotometric Determination of Vanadium(IV) and Vanadium(V) in Each Other's Presence, Analyst, 119: 1263-1276 (1994).

[2]   Patel B., Henderson G.E., Haswell S.J., Grzeskowiak R., Speciation of Vanadium Present in a Model Yeast System, Analyst , 115: 1063-1066 (1990).

[3] Berman E., "Toxic Metal and their Analysis" (Chapter 30), Heyden, London, 1980, 221-223.

[4] Akbari A., Mousavi M.F., Shamsipur M., Rahmanifar M.S., A PVC -Based 1,8-Diaminoaphthalen Electrode for Selective Determination of Vanadyl Ion, Talanta, , 60: 853-859 (2003).

[5] Moghimi M., Bagherinia M.A., Arvand M., Zanjanchi M.A., Polymeric Membrane Sensor for Potentiometric Determination of Vanadyl, Analytica Chimica Acta , 527, 169-175 (2004).

[6]   Akbari A., Mousavi M.F., Rahmanifar M.S., Barzegar M.,A PVC-Based Vanadyl Phosphate Membrane Potentiometric Sensor for Vanadyl Ions, Analytical Letters, 37(2): 203-212 (2004).

[7] Paulo Sérgio de Carvalho, Marta Maróstica, Alessandra Gambero, José Pedrazzoli Jr, Synthesis and Pharmacological Characterization of a Novel Nitric Oxide-Releasing Diclofenac Derivative Containing a Benzofuroxan Moiety, European Journal of Medicinal Chemistry, 45: 2489-2493 (2010).

[8] Fakhari A.R., Ganjali M.R., Shamsipur M., PVC-Based Hexathia-18-Crown-6-Tetraone Sensor for Mercury(II) Ions, Anal. Chem., 69: 3693-3696 (1997).

[9] Mazloum M., Ensafi A.A., Salavati M., Mirhoseini S., Selective Thiocyanate Poly(Vinylchloride) Membrane Based on a 1,8-Dibenzyl-1,3,6,8,10,13-Hexaazacyclotetradecane-Ni(II) Perchlorate, Anal.Chim. Acta, 462: 25-30 (2002).

[11] Ammann D., Morf W.E., Anker P., Meier P.C., Pretsch E., Simon W., Neutral Carrier Based Ion-Selective Electrodes, Ion-Selective Electrode Rev, 5: 3-92 (1983).

[12] Srinivasan K., Rechnitz G.A., Selectivity Studies on Liquid Membrane, Ion-Selective Electrodes, Anal. Chem, 41: 1203-1208 (1969).

[13] Bakker E., B¨uhlmann P., Pretsch E., Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 1. General Characteristics, Chem. Rev, 97: 3083-3132 (1997).

[14] Bailar J.C., Enelus H.J., Nyholm S.R., Trotman A.F., "Comprehensive Inorganic Chemistry", Vol. 3, Pergamon Press, Oxford: 520 (1975).

[15] Jain A.K., Gupta V.K., Singh L.P., Khurana U., Novel PVC-Based Membrane Sensors Selective for Vanadyl Ions, Talanta, 46:1453 (1998).

[16] Xu D., Katsu T., Application of Tri-n-Octylphosphine Oxide as an Ionophore for
a Vanadyl Ion-Selective Membrane Electrode, Electroanalysis, 13: 868-871 (2001).

[17] Karami H., Mousavi M.F., Shamsipur M., New Flow Injection Potentiometric Graohite Coated Ion-Selective Electrode for the Determination of VO2+ Ions, Anal. Chim. Acta , 481: 213-219 (2003).

[18] Arvand M., Moghimi M., Bagherinia M.A., Sol-Gel Derived Potentiometric Sensor for Determination of Vanadyl Ions, Electroanalysis, 19: 2571-2576 (2007).

[19] Zongqing D., Qiongyao Zh., Guangdong L., Determination of Vanadium in Environmental Water Samples by Dispersive Liquid-Liquid Microextraction Coupled with Digital Colorimetry, Acta Chim. Sin., 67: 1962-1966 (2009).

[20] Berton P., Martinis E.M., Wuilloud R.G., Development of an On-Line Temperature-Assisted Ionic Liquid Dispersive Microextraction System for Sensitive Determination of Vanadium in Environmental and Biological Samples, Journal of Hazardous Materials, 176: 721-728 (2010).

[21] Aliakbari A., Amini M.M., Mehrani K.,  Moghadam Zadeh H., Magnetic Ion Imprinted Polymer Nanoparticles for the Preconcentration of Vanadium(IV) Ions, Microchimica Acta,181: 1931-1938 (2015).

[22] Brown R.J., Determination of Trace Metals in Petroleum and Petroleum Products Using
an Inductively Coupled Plasma Optical Emission Spectrometer, Spectrochimica Acta Part B: Atomic Spectroscopy, 38: 283-289 (1983).