The Conformational Effect of 6-Mono-Substituted and 6,7-Di-Substituted Derivatives of 5,6,7,8-Tetrahydrodibenzo[a,c]cyclo-octene on 13C Chemical Shift

Document Type: Research Article

Authors

Department of Chemistry, Faculty of Science, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, P.O. Box 18155-144 Tehran, I.R. IRAN

Abstract

Hartree-Fock (HF) and Density Functional Theory (DFT) methods employed to study the effect of conformational change on the 13C chemical shifts of 6-mono axial and equatorial substituted and 6,7-di axial-axial, equatorial-equatorial and axial-equatorial substitutedderivatives of 5,6,7,8-tetrahydrodibenzo[a,c]cyclo-octene. The geometry of the conformers have been optimized in the gas phase employing the 6-311G(d,p) basis set. The 13C chemical shifts were calculated by Gauge Including Atomic Orbitals (GIAO) method. The correlation between calculated 13C chemical shifts in the gas phase and experimental ones in CDCl3 solvent is linear with squared regression coefficient of 0.96. Also the calculated 13C chemical shift in the gas phase by the HF method shows better correlation with experimental ones compared with DFT method. Calculations of both the paramagnetic and diamagnetic shielding of carbon atoms demonstrate that the difference between experimental 13C chemical shifts of the axial and equatorial substituted carbon atoms are more due to the paramagnetic than the diamagnetic shielding.  

Keywords

Main Subjects


[1] Carbajo R.J., Neira J.L., NMR for Chemists and Biologists (Springer Briefs in Biochemistry and Molecular Biology), Springer, (2013).

[2] Marion D., An Introduction to Biological NMR Spectroscopy, Mol Cell Proteomics, 12(11): 3006-25 (2013).

[3] Mittermaier A.K., Kay L.E., Observing biological dynamics at atomic resolution using NMR. Trends Biochem Sci., 34(12): 601-11 (2009).

[4] Pellecchia M., Bertini I., Cowburn D., Dalvit C., Giralt E., Jahnke W., James T.L., Homans S.W., Kessler H., Luchinat C., Perspectives on NMR in Drug Discovery: A Technique Comes of Age, Nature Reviews Drug Discovery, 7(9): 738–45 (2008).

[5] Bifulco G., Dambruoso P., Gomez-Paloma L., Riccio R., Determination of Relative Configuration in Organic Compounds by NMR Spectroscopy and Computational Methods, Chem. Rev., 107(9): 3744-3779 (2007).

[6] Ditchfield R., Molecular Orbital Theory of Magnetic Shielding and Magnetic Susceptibility, J. Chem. Phys., 56(11): 5688-5691 (1972).

[7] Ditchfield, R., Self-Consistent Perturbation Theory of Diamagnetism, Mol. Phys., 27(4): 789-807 (1974).

[8] Wolinski K., Hinton J. F., Pulay P., Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations, J. Am. Chem. Soc., 112(23): 8251-8260 (1990).

[9] Cheeseman J. R., Trucks G. W., Keith T.A., Frisch M. J., A Comparison of Models for Calculating Nuclear Magnetic resonance Shielding Tensors, J. Chem. Phys., 104(14): 5497-5509 (1996).

[11] Adamo C., Barone V., Toward Reliable Density Functional Methods Without Adjustable Parameters: The PBE0 Model, J. Chem. Phys., 110(13): 6158-6170 (1999).

[12] Pulay P., Hinton J.F., Wolinski K., Efficient Implementation of the Gauge-including Atomic Orbital Method for NMR Chemical Shift Calculations, Proceeding of the NATO Advanced Study Workshop on "The Calculation of NMR Shielding Constants", College Park MD (1992), Tossell J. A., Ed. Kluwer, Dordrecht, The Netherlands, 243, (1993).

[13] Pulay P., Hinton J. F., Shielding theory: GIAO Mmethod In: Grant D. M., Harris R. K., Eds. "Encyclopedia of Nuclear Magnetic Resonance", John Wiley & Sons, Chichester, 4334-4339 (1996).

[14] Rauhut G., Puyear S., Wolinski K, Pulay P., Comparison of NMR Chemical Shieldings Calculated from Hartree-Fock and Density Functional Wavefunctions Using Gauge-including Atomic Orbitals, J. Phys. Chem., 100(15): 6310-6316 (1996).

[16] Helgaker T., Jaszunski M., Ruud K., Ab Initio Methods for the Calculation of NMR Shielding and Indirect Spin-Spin Coupling Constants, Chem. Rev., 99(1): 293-352 (1999).

[17] Facelli J. C., Chemical Shift Tensors: Theory and Application to Molecular Structural Problems, Prog. Nucl. Magn. Reson. Spectrosc., 58(3-4): 176-201 (2011).

[18] Chesnut D. B., Some Recent Ab Initio Calculations of the NMR Chemical Shift, Annu. Rep. NMR Spectrosc., 21: 51-97 (1989).

[19] (a) Fukui H., Miura K., Yamazaki H., Nosaka T., Calculation of NMR Chemical shifts. V. The Gauge Invariant Coupled Hartree-Fock Calculation for H2O, H3O+, and OH, J. Chem. Phys., 82(3): 1410-1412 (1985). (b) Fukui H., Miura K., Shinbori H., Calculation of NMR Chemical Shifts. VI. Gauge Invariant and Hermitian Condition, J. Chem. Phys., 83(2): 907 (1985).

[20] Baker J.D., Zerner M.C., Calculation of 13C-NMR Chemical Shift using the Intermediate Neglect of Differential Overlap Model, Int. J. Quantum Chem., 43(3): 327-342 (1992).

[22] Rashidi-Ranjbar P., Sandstorm J., Conformational Analysis of Some Four-Carbon 2,2′-bridged Biphenyls, J. Chem. Soc. Perkin Trans. 2, 901-906 (1990).

[23] Isakson R., Rashidi-Ranjbar P., Sandstrom J., Synthesis and Chromatographic Resolution of Some Chiral Four-Carbon 2,2′-Bridged Biphenyls. Some Unusually High Selectivity Factors, J. Chem. Soc. Perkin Trans. 1, 1147-1152 (1991).

[25] Deppmeier B.J., Driessen A.J., Hehre T.S., Hehre W.J., Johnson J.A., Klunzinger P.E., Leonard J.M.,
Pham I.N., Pietro W.J., Yu Jianguo, "Spartan '10, Version 1.0.0,Wavefunction", Inc., Irvine, CA, (2008).

[26] Becke A.D., Density-Functional Thermochemistry. III. The Role of Exact Exchange, J. Chem. Phys., 98(7): 5648-5652 (1993).

[27] Becke A. D., Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior, Phys. Rev. A., 38(6): 3098-3100 (1988).

[28] Lee C., Yang W., Parr R.G., Development of the Colle-Salvetti Correlation-Energy Formula Into a Functional of the Electron Density, Phys. Rev. B., 37(2): 785-789 (1988).