The Effect of Micro Turbulence on Quartz Flotation Rate

Document Type: Research Article


1 Mining Engineering Department, Tarbiat Modares University, Tehran, I.R. IRAN

2 Mining Engineering Department, Amirkabir University of Technology, Tehran, I.R. IRAN


In this research, the effect of micro turbulence on the flotation rate of quartz particles was investigated. The maximum particle Reynolds number (Rep) was obtained at 60.25 with a particle size of -500+420 µm, impeller speed of 900 rpm, bubble surface area flux of 10.21 1/s and micro scale turbulence size of 162 µm. When the micro turbulence size was equal to the particle size, the maximum flotation rate of coarse particles (Rep>10) was obtained at 1.47 1/min.


Main Subjects

[2] Hernandez H., Gomez C.O., Finch J.A., A Test of the Flotation Rate vs. Bubble Surface Area Flux Relationship, J.A. Finch, S.R. Rao, L. Huang (Eds.), "Proceedings of 4th UBC-McGill Symposium on Fundamentals in Mineral Processing, Toronto", August 26–29, 59-74 (2001).
[3] Hernandez H., Gomez C.O., Finch J.A., Gas Dispersion and Deinking in a Flotation Column, Minerals Engineering, 16: 739-744 (2003).
[4] Hernandez-Aguilar, J.R., Rao, S.R., Finch, J.A., Testing the k-Sb Relationship at the Micro Scale, Minerals Engineering, 18: 591-598 (2005).
[5] Gorain B.K., Napier-Munn T.J., Franzidis J.P., Manlapig E.V., Studies on Impeller Type, Impeller Speed and Air Flow Rate in an Industrial Scale Flotation Cell. Part 5: Validation of k-Sb Relationship and Effect of Froth Depth, Minerals Engineering, 11: 615-626 (1998).
[6] Pyke B., "Bubble-Particle Capture in Turbulent Flotation Systems", Ph.D. Thesis, University of South Australia, Australia, (2003).
[7] Pyke B., Fornasiero D., Ralston J., Bubble Particle Heterocoagulation Under Turbulent Conditions, Journal of Colloid Inputface Science, 265: 141–151 (2003).
[8] Bloom F., Heindel T.J., On the Structure of Collision and Detachment Frequencies in Flotation Models, Chemical Engineering Science, 57: 2467–2473 (2002).
[9] Schubert H., Die Modellierung des Flotations Prozesses auf Hydrodynamischer, Grundlage-Neue Bergbautechnik, 7: 446-456 (1977).
[10] Schulze H.J., "Physico-Chemical Elementary Processes in Flotation: An Analysis from the Point of View of Colloid Science Including Processes Engineering Considerations", Dev. in Mineral Processing, (Fuerstenau, D.W., Advisory Ed.), Elsevier, Amsterdam, 4: 348 (1984).
[11] Chehreh Chelgani S., Shahbazi B., Rezai B., Estimation of Froth Flotation Recovery and Collision Probability Based on Operational Parameters Using an Artificial Neural Network, International Journal of Minerals, Metallurgy and Materials, 17: 526-534 (2010).
[12] Shahbazi B., Rezai B., Koleini Javad S.M., Effect of Dimensionless Hydrodynamic Parameters on Coarse Particles Flotation, Asian Journal of Chemistry, 3: 2180-2188 (2008).
[13] Shahbazi B., Rezai B., The Effect of Type and Dosage of Frothers on Coarse Particles Flotation, Iran. J. Chem. Chem. Eng. (IJCCE), 28: 95-101 (2009).
[14] Shahbazi, B., Rezai, B.,  Koleini, S.M. Javad, Noaparast M., The Effect of Dimensionless Parameters on Coal Flotation, International Journal of Coal Preparation and Utilization, 32: 157-168 (2012).
[15] Shahbazi B., Rezai B., Koleini S.M. Javad, Noaparast M., The Effect of Bubble Surface Area Flux on Flotation Efficiency of Pyrite Particles, Iran. J. Chem. Chem. Eng. (IJCCE), 32: 109-118 (2013).
[16] Shahbazi B., Rezai B., Koleini S.M.J., Noaparast M., The Study of Influence of Bubble Surface Area Flux on Flotation Rate Constant of Coal Particles, Geosciences, 23: 45-52 (2014).
[17] Shahbazi B., Rezai B., The Effect of Dimensionless Parameters and Bubble Surface Area Flux on Flotation Rate Constant, Journal of Dispersion Science and Technology, 36: 471-476 (2015).
[18] Shahbazi B., Rezai B., Chehreh Chelgani S., Koleini S.M.J., Noaparast M., Estimation of Diameter and Surface Area Flux of Bubbles Based on Operational Gas Dispersion Parameters by Using Regression and ANFIS, International Journal of Mining Science and Technology, 23: 343-348 (2013).
[19] Shahbazi B., Rezai B., Koleini S.M.J., Noaparast M., Estimation of Gas Holdup and Input Power in Froth Flotation Using Artificial Neural Network, Iranian Journal of Materials Science and Engineering, 12: 12-20 (2015).
[20] Ehsani M.R., Eghbali F., Reduction of Sulfur and Ash from Tabas Coal by Froth Flotation, Iran. J. Chem. Chem. Eng. (IJCCE), 26: 35-40 (2007).
[21] Ahmadi R., Khodadadi Darban A., Abdollahy M., Flotation of Chalcopyrite Fine Particles in the Presence of Hydrodynamic Cavitation Nano Bubbles, Nashrieh Shimi va Mohandesi Shimi Iran, 32: 81-91(2013). [In Persian]
[22] Girgin E.H., Do S., Gomez C.O., Finch J.A., Bubble Size as a Function of Impeller Speed in a Self-Aeration Laboratory Flotation Cell, Minerals Engineering, 19: 201-203 (2006).
[23] Ralston J., Fornasiero D., Hayes R., Bubble-Particle Attachment and Detachment in Flotation, International Journal of Mineral Processing, 56: 133-164 (1999).
[24] Dukhin S.S., Miller R., Loglio G., Physico-Chemical Hydrodynamic of Rising Bubble, "Drops and Bubbles in Interfacial Research", D. Mobius and R. Miller (Editors) Elsevier Science B.V. All rights reserved, (1998).
[25] Hu Yuehua, Qiu, Guangzhou, Miller J.D., Hydrodynamic Interactions Between Particles in Aggregation and Flotation, Int. J. Miner. Process, 70: 157– 170 (2003).
[26] Dobby G.S., Finch J.A., Particle Size Dependence in Flotation Derived from a Fundamental Model of the Capture Process, Int. J. Miner. Process, 27: 241-263 (1987).
[27] Crawford R., Ralston J., The Influence of Particle Size and Contact Angle in Mineral Flotation, Int. J. Miner. Process, 23: 1-24 (1988).
[28] Hewitt D., Fornasiero D., Ralston J., Bubble-Particle Attachment, J. Chem. Soc. Faraday Trans, 13: 1997-2001 (1995).
[29] Jameson G.J., Nam S., Young M.M., Physical Factors Affecting Recovery Rates in Flotation, Min. Sci. Eng, 9: 103-118 (1977).
[30] Schulz, H.J., Hydrodynamics of Bubble-Mineral particle collisions, Min. Process. Extractive. Metall, 5: 43-76 (1989).
[31] Dai Z., Fornasiero D., Ralston J., Particle-Bubble Collision Models-A Review, Adv. Colloid. Interfac, 85: 231-256 (2000).
[32] Yoon R.H., The role of Hydrodynamic and Surface Forces in Bubble-Particle Interaction, Int. J. Miner. Process, 58: 129-143 (2000).
[33] Deglon D.A., Egya-mensah D., Franzidis J.P., Review of Hydrodynamics and Gas Dispersion in Flotation Cells on South African Platinum Concentrators, Minerals Engineering, 13: 235-244 (2000).
[34] Schubert H., On the Turbulence-Controlled Micro Processes in Flotation Machines, International Journal of Mineral Processing, 56: 257-276 (1999).