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ABSTRACT: In the present work, the integral equations method is used to calculate transport 
properties of polar fluids. For this goal, we use the Stockmayer potential and examine theoretically 
the thermal conductivity of several refrigerant mixtures such as R125+R134a, R125+R32, 
R125+R152a, R134a+R32, R152a+R32, R134a+R143a, and R125+R143a. We solve numerically 
the Ornstein-Zernike (OZ) equation using the Hypernetted Chain (HNC) approximation  for binary 
fluid mixtures and obtain the pair correlation functions. Finally, the temperature dependence of 
thermal conductivity is studied using Vesovic-Wakeham method and compared with available 
results. 
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INTRODUCTION 
Understanding of structure and transport properties of 

molecular fluids, like viscosity and thermal conductivity, 
is one of main challenges in the condensed matter 
physics. Thermophysical properties of polar fluids  
have received much attention in past few years. Hitherto, 
the considerable progresses have been made in the 
understanding of the behavior of polar fluids by 
considering different models (Hansen et al. [1];  
Gray et al. [2]). These models can be classified  
according to the type of interaction between the 
molecules (Prera et al. [3]; Dijkstra et al. [4];  
Moradi et al. [5]; Zhou et al. [6]; Gay et al. [7];  
Khordad [8]; Papari et al. [9]; Khordad et al. [10]). 

There are a number of theoretical studies on the 
structure and the thermodynamic properties of polar 
fluids, and the existing theories can be classified into two 
different categories. The first one is based on Density 
Functional Theory (DFT), which has been applied quite 
 
 
 

successfully to the simple and multi-component molecular 
fluids. The second one belongs to the methods based  
on the integral equation theory, which has been found  
to be quite successful in describing polar fluids.  
Integral equation theory for the structural and 
thermodynamic properties of molecular fluids with 
orientational degrees of freedom is now reasonably well 
developed (Hansen et al. [1]; Gray et al. [2]; Blum [11]; 
Klapp et al. [12]; Wei et al. [13]). 

Wertheim's analytic solution (Wertheim [14])  
of the mean spherical approximation integral equation  
for the dipolar hard sphere fluids was the first advance  
in our understanding of polar fluids since the work  
of Onsager [15]. Over the last two decades, integral 
equation method of classical equilibrium statistical 
mechanics have been used successfully to describe the 
thermodynamical properties and structure of simple and 
multi-component polar fluids such as dipolar hard spheres 
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(Onsager [15]), the dipolar Yukawa (Henderson et al. [16]), 
dipolar hard ellipsoids (Perera et al. [17]), and the 
Stockmayer fluid (Rowlinson et al. [18]). It is worth 
mentioning that there is also another computational 
method to study polar fluids like the computer 
simulation.  

As we know, the macroscopic properties of polar 
matter (in addition to dipole-dipole interaction) come 
from the balance between the short ranged atomic 
repulsions, which avoids the collapse, and the longer 
ranged attractions which keep the matter condensed.  
The theoretical models developed to study the properties 
of real systems have often included these two effects  
as separated pieces. One of the famous models  
is the Lennard-Jones (LJ) potential (Hansen et al. [1]; 
Khordad [8]; Papari et al. [9]).  

Transport properties of polar fluids such as thermal 
conductivity and viscosity have been investigated using 
different theoretical (Hansen et al., [1]; Gray et al. [2]) 
and computing simulation techniques (Allen et al. [19]; 
Frenkel et al. [20]; Sadus [21]; Alavi Fazel et al. [22]; 
Khorsand Movagar et al. [23]; Ziabasharhagh et al. [24]; 
Ghazanfari et al. [25]). A great deal of information for 
polar fluids has been obtained using the Stockmayer 
molecular model. Although that model is a great 
idealization of real polar molecules interactions,  
it has been used successfully for describing the properties 
of polar pure fluids (Hansen et al. [1]; Gray et al. [2]) 
and their mixtures (Rowlinson et al. [18]). 

In the present work we apply an integral equation 
approach for obtaining transport properties of refrigerant 
mixtures using the Stockmayer model. For this purpose, 
we employ the Ornstein-Zernike (OZ) integral equation 
and HyperNetted Chain (HNC) closure relation for binary 
fluid mixtures. From a technical perspective, our 
approach essentially follows the methods developed  
for isotropic (Fries et al. [26]) and perfectly ordered 
systems in two and three dimensions (Caillol et al. [27]; 
Moradi et al. [28]). In order to solve the two-particle 
integral equations, all correlation functions are expanded 
in an appropriate angle-dependent basis set consisting  
of spherical harmonics. In this regard, we try to solve  
the OZ integral equation for binary fluid mixtures using 
the HNC approximation to find the correlation functions. 
Then, we apply these correlation functions to determine 
the thermal conductivity of several refrigerant mixtures 

like R125+R134a, R125+R32, R125+R152a, 
R134a+R32, R152a+R32, R134a+R143a, and 
R125+R143a.  

 
THEORITICAL  SECTION 
Stockmayer potential model 

As we know, the description of the interaction 
between two molecules in polar fluids has greater 
problems than for spherical particles because the pair 
potential is a function both of the separation of the 
molecules and of their mutual orientation. Let us consider 
a system composed of spherical particles with an 
embedded point dipole at the center. The total pair 
potential between two molecules saysi and j, separated  
by a distance 

( ) ( ) ( )LJ dd
ij ij iju r u r u r= +                                              (1) 

Eq. (1) is called the Stockmayer potential model and 
it is the sum of the LJ potential 

( )
12 6

ij ijdd
ij ij ij

ij ij
u r 4

r r

    σ σ = ε −           

                                  (2) 

and the potential between two point dipoles, dipole-
dipole (dd) interaction, iµ

  and jµ
  of  strength µiand µj 

located at the centers of molecules i and j. 

( ) ( )( )i ij j iji jdd
ij ij 3 5

ij ij

3 .r .r.
u r

r r

 µ µµ µ
 = −
  

 

 

                              (3) 

( )( )i j
i j i ij j ij3

ij

.
ˆ ˆˆ ˆ. 3 .r .r

r

µ µ
 = µ µ − µ µ 
   

Also, εij sets the energy scale (the LJ energy 
parameter) and σij the length scale (the LJ size 
parameter). To use the Stockmayer potential for polar 
mixtures, three parameters, σij , εij and µij must be 
determined. Therefore, the pure substance parameters are 
used to evaluate these parameters. In this case, we take 
the parameters, σ, ε and µ from experimental data or 
simulation results. The dipole moment µ is also taken 
directly from its experimental value. For the dipole 
moment parameter, we use effective Stockmayer potential 
model which has been reported by Gao et al. [29]. 
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Integral equation method 
Expansion of the correlation functions 

The whole structural information about the systems  
is contained in the total and direct correlation functions 
h(1.2) and c(1.2). These are calculated by iterative 
solution of the OZ equation combined with a closure 
equation relating c(1.2), h(1.2) and the pair potential. The 
OZ equation for perfectly ordered binary mixtures  
is given by (Hansen et al. [1]). 

( ) ( ) ( ) ( )
2

ij ij is s sj
s 1

1h 1,2 c 1,2 d3h 1,3 c 3, 2
4 =

= + ρ
π∑            (4) 

where ρs is the number density of species s, cij and hij 
are the direct and total correlation functions between 
molecules of species i and j. There are few numerical 
results for the fluid mixtures with the help of the integral 
equation (4) combined with an appropriate closure 
relation (Khordad [8]; Moradi et al. [28]). Here, we give 
the basis steps to solve the OZ equation for the binary 
fluid mixtures using the Stockmayer model. Following 
Edmonds (Edmonds 1960 [30]), we treat the angle dependence 
of the two-particle correlation functions by expanding  
in a symmetry adapted basis set. We expand the correlation 
functions in terms of a complete set of angular functions.  
As we know, the correlation functions must be independent 
of our choice of coordinate system and this invariance 
simplifies the expansion. Introducing the variable 

( )12 12 12 2 1r , r r r= ω = −
    we find (Edmonds 1960 [30]) 

( ) ( ) ( )1 2

1 2

l l l
ij ij 1 2 12 1 2 12

l l l
f 1, 2 f l l l; r , ,= Φ ω ω ω∑                   (5) 

with ( ) ( )ij ijf 1, 2 h 1,2=  or ( )ijc 1, 2  and 

( )1 2l l l
1 2 12, ,Φ ω ω ω =                                                        (6) 

( ) ( ) ( ) ( )1

1 1 1 1
1 2

m 1 2 *
l m 1 l m 1 lm 12

1 2m m m

l l l
1 Y Y Y

m m m
 

− ω ω ω − 
∑  

Here ( )12 12 12,ω ≡ θ ϕ  describes the orientation of r12, 

( )lmY ω  is a spherical harmonic, and 

1 2

1 2

l l l
m m m

 
 − 

 is the 3j symbol which relates to the 

Clebsch-Gordan coefficients (Gray et al., 1984 [2]). Due 
to the properties of the dipolar potential, we have  

( ) ( )1 2 2 1l l l l l l
ij ijf r f r=  

The OZ integral equation 
To treat the OZ equation (4) one introduces the 

Fourier transforms 

( ) ( )i,k,r
ij 1 2 ij 1 2f k, , dr e f r, ,ω ω = ω ω =∫                          (7) 

( )1 2 1 2

1 2

l l l l l l
1 2 kij

l l l
f (k) , ,Φ ω ω ω∑   

where kω  describes the orientation of the wave vector k. 
The expansion coefficients are Hankel transforms  
(Gray et al. [2]) of the corresponding spatial functions 
defined by 

( ) ( )1 2 1 2l l l l l ll 2
lij ij0

f k 4 i drr j kr f
∞

= π ∫                                    (8) 

Here jl(kr) are spherical Bessel functions and 

i 1= − . In the following we will make use 
of an alternative to Eq. (7): choosing the polar axis 

along k one gets 

( ) ( ) ( )
( )

( )1 2
1 2 1 2

1 2 1 2

min l ,l
l l l l

ij 1 2 1 2ij
l l l min l ,l

f k, , f k ,
λ=+

λ
λ

λ=−
Ω Ω = Ψ Ω Ω∑ ∑     (9) 

Where 

( ) ( )
( ) ( )1 2

1 2

l l
l 1 l 2

1 2

4 Y Y
2l 1 2l 1

λ λλ
π

Ψ = Ω Ω
+ + +

        (10) 

Now, 1 2,Ω Ω  describe orientations with respect to k 
(k frame) and the new coefficients are 

linear combinations of those in the past system 

( ) ( ) ( )
1 2

1 2 1 2

1 2

l l
l l l l l

1 2ij ij
l l l

2l 1f k C l l l : , ,0 f k
4

+
λ

= −

+
= λ −λ

π∑        (11) 

where ( )1 2C l l l : , ,0λ −λ  is the Clebsch-Gordan 

coefficients. The coefficients have the properties  
(Hansen et al. [1]). 

( ) ( ) ( ) ( )1 2 2 1 1 2 2 1l l l l l l l l ,
ij ij ij ijf k f k , f k f kλ λ λ −λ= =                (12) 

The great advantage of the k frame is that the OZ  
Eq. (4) decouples with respect to the 

Index λ: 

( ) ( )1 2 1 2l l l l
ij ijh k c kλ λ= +

                                                   (13) 

( ) ( ) ( )1 2 1 2
2

l l l l
sis sj

3s 1 l R

11 h k c k
4 2l 1

λ
λ λ

= =

−
ρ

π +∑∑ 
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This equation can be written in matrix form for  
the values λ and k, 

( ) ( ) ( ) ( )s
ij ij is sj ijh ;k c ;k h ;k c h ;k

4
ρ

λ = λ + λ λ
π

             (14) 

In above equation, ijc  and ijh  are 2×2 matrices, 

where each element is a matrix with indices l1 and l2. 
Also, sρ  is the diagonal matrix with indices ρ1 and ρ2. 
This is a linear system of equations that determine 

( )1 2l l
ijh kλ
  if ( )1 2l l

ijc kλ
   are known. As we see, this 

equation has two unknown functions. Therefore, we 
require an extra equation which relates these functions. 
 
Closure relationships 

Closure expressions relate the two-particle correlation 
functions and the pair potential. In the present paper  
we consider the HNC approximation for the binary mixtures 
which can be written as (Hansen et al. [1]) 

( ) ( ) ( ) ( )ij ij ij ijc 1, 2 u 1,2 h 1, 2 ln g 1, 2= −β + −                 (15) 

where β is the inverse temperature, gij is the pair 
distribution function, and uij is defined 

in Eq. (1). A problem arises from the fact, that the 
logarithm in the closure [Eq. (15)] cannot be expanded in 
spherical invariants. This problem has been overcome  
by Fries & Patey [26]. By differentiating the closure  
with respect to one of independent variables one gets 

linear differential equations between the ( )1 2l l l
ijf r . 

Choosing the particle distance r12 as this variable yields 
(Fries et al. [26]) 

( ) ( )
( )

( )
12

ij
ij ij ijr

W 1,2
c 1,2 dr h 1,2 u 1,2

r
∞ δ

′= −β
′δ∫             (16) 

Where 
( ) ( ) ( )ij ij ijW 1, 2 y 1, 2 u 1,2= − −β                                   (17) 

In above equation, yij  (1, 2) is the auxiliary function 
between molecules of species i and j. 

Employing this form of the closure together with Eq. (5) 
one obtains 

1 2 1 2l l m m
ijc (r) =                                                                 (18) 

( )
( )1 2 1 2

1 2 1 2

1 2 1 2 1 2 1 2

l l l m m
ijl l l m m

ijr
l l l m m l l l m m

W r
dr h r

r

′′ ′′ ′′ ′′ ′′
∞ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′′ ′′ ′′ ′′ ′′

′δ
′ ′℘ −

′δ∑ ∑ ∑ ∑ ∫  

1 2 1 2l l m m
iju (r)β  

where ℘  depends on all the 15 indices and has  
the explicit form 

℘=                                                                               (19) 

( ) ( ) ( ) ( )1 1 1 1 2 2 1 1 1 1 1 1c l l l ,000 c l l l ,000 c l l l,000 c l l l ,m m m′ ′′ ′ ′′ ′ ′′ ′ ′′ ′ ′′ ×  

( ) ( ) ( )( )
( )2 2 2 2 2 2

2l 1 2l 1
c l l l ,m m m c l l l,m m m

4 2l 1
′ ′′+ +

′ ′′ ′ ′′ ′ ′′ ′ ′′
π +

 

( )( )
( )

( )( )
( )

1 1 2 2

1 2

2l 1 2l 1 2l 1 2l 1
4 2l 1 4 2l 1
′ ′′ ′ ′′+ + + +
π + π +

 

with m m'1+m'2, 1 2m m m′′ ′′ ′′= + and m=m1+m2. This 

expansion, however, can only 
be carried out numerically in most cases. With the 

help of this closure relation, we can now solve the OZ 
equation numerically by iteration (Khordad [8];  
Fries et al. [26]; Moradi et al. [28]; Perera et al. [31]).  
In previous work (Khordad et al. [10]), we showed that  
at lower cutoff lmax = 2 the HNC closure gives different 
results for correlation functions which is not in agreement 
with computer simulations. But, at higher cutoff lmax = 6 
the obtained results are in agreement with computer 
simulations. In the present work, we performed  
the calculations at lower cutoff, i.e., we truncated  
the series at lmax = 2. 

 
Thermal conductivity 
In order to put the subsequent discussion of the results in 
a proper context, it is useful to summarize the Vesovic-
Wakeham (VW) prediction method. For brevity, only  
the essential elements of the methodology are presented here 
and the reader is referred to the original publication for 
more details (Dipippo et al. [32]; Sandler et al. [33]; 
Vesovic et al. [34]).  

The most advanced theoretical results for the 
background thermal conductivity of dense fluid mixtures 
are those proposed by Mason et al. which are based upon 
the Thorne-Enskog equations for the transport properties 
of a fluid mixture or a gas mixture composed of N species 
of rigid spherical molecules. The results of Mason et al. 
can be written in the form [35]: 

( )mix mix mixmonλ = λ + λ                                             (20) 
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in which ( )mix monλ  denotes the contribution of 

translational energy transport to the thermal conductivity 
and ( )mix monλ  denotes the contribution of internal 

energy transport. Explicitly, 

( )

11 1N 1

N1 NN N

1 N
mix mix

11 1N

N1 NN

L L Y

L L Y
Y Y 0

mon K
L L

L L

′λ = +



  







 

               (21) 

where 

( )
N

i j
i i j ij ij2

j 1 i j

2m m
Y x 1 x

m m=

 
 = + γ χ ρ +  
∑                            (22) 

and 

( )
2

i j iji ii
ii 0 2* 0i jij ij ij i j

x x xx
L

2A m m≠

χ
= + ×

λ λ +
∑                           (23) 

2 2 2 * *
i j j ij i j ij

15 25m m 3m B 4m m A
2 4

 + − +  
 

( )
i j i j * *

ii ij ij2* 0
ij ij i j

x x m m 55L 3B 4A
42A m m

 = − +  λ +
                 (24) 

( )
N N

i j i j2 2 0
mix ij ij ij2

i j j 1 i j

x x m m16 10K
5 9 m m= =

= ρ χ γ λ
π +

∑∑                   (25) 

( ) ( )
( )

10 0 0 *N
i ij j i ij ii

0 *
iii j j i ii ij

mon x mon A
(int) 1

x mon A

−

=

   λ − λ λ χ
   λ = +

χ λ χ      
∑    (26) 

Here ρ is the molar density of the fluid mixture, the 
quantities xi and xj are the mole fractions of species i and 

j and mi and mj are their molecular masses. *
ijA  and *

ijB  

are weak functional of the intermolecular potential for the 
i-j interaction. 

The quantity 0
iλ  displays the thermal conductivity of 

species i at zero density, and ( )0
i monλ  is the 

translational contribution to the thermal conductivity of 

the same component. The symbol ( )0
ij monλ  is the 

interaction thermal conductivity for species i and j. The 

quantities ( )0
i monλ  and ( )0

ij monλ  can be obtained from 

the viscosity 0
ijη  of dilute pure gases and the interaction 

viscosity 0
ijη  according to the below equation 

( ) 0
B i j ij0

ij
i j

15k m m
(mon)

8m m

+ η
λ =                                     (27) 

where kB is the Boltzmann constant. The parameter 

ijγ  displays the shortening of the mean-free- path for 

interactions of species i and j, and ijχ  is the radial 

distribution function of species i and j. 
We note that for the mixture thermal conductivity 

calculations, the pseudo-radial distributionfunction ijχ  

for species i and j in the mixture should be evaluated.  
It is obvious that this quantity has an important role to 
determine the viscosity and thermal conductivity. 

Related to this problem, various approximate theories 
(Moradi et al. [5]; Khordad [8]; Papari et al. [9];  
Moradi et al. [28]; Perera et al. [31]; Degreve et al. [36]),  
and computer simulations have been carried out in two 
and three dimensions. As we know, in the most of earlier 
papers, the authors have used the Carnahan-Starling 
result to determine the viscosity and thermal conductivity 
some systems. Here, from the numerical solution of the 
OZ equation one can obtain cij(r) and hij(r). Using  
the functions, we can obtain the radial distribution function. 

From the numerical solution of the OZ equation one 
can obtain the radial distribution function and use in the 
thermal conductivity equations. To calculate the variables 

*
ijA  and *

ijB , one can use the following relations  

(Royal et al. [37]; Royal et al. [38]). 

( )2* * *
ijln A 0.1281 0.1108ln T 0.0962 ln T= − + −        (28) 

( ) ( )3 4* *0.0271 ln T 0.0024 ln T+  

* *
ijln B 1.1943596 0.13028165ln T= − +                      (29) 

( ) ( )2 3* *0.019326273 ln T 0.03207664 ln T− −  

( ) ( )4 5* *0.014070309 ln T 0.0015408879 ln T+  

Where *
B ijT k T= ε  and 
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Table 1: Molecular parameters for several refrigerant gases. (ε is the energy scale, σ is the length scale,  
µexp is experimental dipole moment, and µ* effective dipole moment). 

µexp(D) µ* σ (A°) ε/kBT Chemical formula Compound 

1.63 1.988 4.034 146.2 CHF R23 

1.98 2.098 3.900 163.1 CH2F2 R32 

1.46 1.768 4.374 199.8 CHCLF2 R22 

2.34 1.990 4.559 169.2 CH3CF3 R143a 

2.26 2.022 4.458 186.1 CHF2CH3 R152a 

1.56 1.979 4.727 166.7 CF3CHF2 R125 

2.06 2.084 4.632 174.9 CF3CH2F R134a 

 
31 3 1 3

ii jj
ij 8

 γ + γ
 γ =
 
 

                                                       (30) 

In Eq. (30), the parameter iiγ  can be determined from 

i
(0) *

iji

21
η

= +
′βη γ ρ

                                                       (31) 

where (0)
iη  is obtained from the experimental data. 

 
RESULTS  AND  DISUSSION  

There are few numerical results, theoretically, for  
the transport properties of polar fluid mixtures such as 
thermal conductivity. For this reason, we have selected 
several refrigerant mixtures like R125+R134a, 
R125+R32, R125+R152a, R134a+R32, etc. and tried  
to compute the thermal conductivity of these fluids by  
a numerical procedure. The main purpose of this work 
has been to solve numerically the OZ integral equation  
by using the HNC approximation and determine thermal 
conductivity of the mentioned particular fluids using  
the Vesovic-Wakeham (Dipippo et al. [32]; Sandler et al. [33]; 
Vesovic et al. [34]) procedure. 

The pure substance parameters iiσ , iiε , and iiµ  
necessary in calculation of thermal conductivity were 
taken from Ref. 29. These parameters were listed in Table 1. 
In order to use the Stockmayer potential for the binary 
mixture systems and evaluate the thermal conductivity of 
them, we needed to know these parameters for mixtures. 

Therefore, we have employed Lorentz-Berthelot 
combining rule to determine ijσ , ijε : 

ij ii jjε = ε ε                                                                   (32) 

ii jj
ij 2

σ +σ
σ =                                                               (33) 

In addition, the dipole moments of mixtures were 
computed with the help of the following mixing rule: 

2 2
i j i j4 3

mix mix 2
i 1 j 1 ij

x x

= =

 µ µ
 µ = σ
 σ 

∑∑                                     (34) 

where mixµ  is dipole moment of mixture, xi(xj) is the 

mole fraction of species i(j) and ijσ  is defined in Eq. (33). 

Also, mixσ  is the length scale of mixture which can be written 
as 

3 3
mix i j ij

i 1 j 1
x x

= =
σ = σ∑∑                                                     (35) 

Table 2 shows the thermal conductivity of the binary 
mixture R125+R134a for different temperatures 
calculated at equal mole fractions. The obtained results 
have been compared with experimental results 
(Moghadasi et al. [39]). It is seen from the table  
that the thermal conductivity increases when temper 
ature increases. We also see that the obtained results  
in this work are in fairly agreement with the experimental 
data. In Table 3, we have calculated the thermal 
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Table 2: Temperature dependence of thermal conductivity of the binary mixture R125+R134a at equal mole fractions.  
Theoretical results (λTh) have been compared with the experimental data (λex) (Moghadasi et al. [39]). 

Error (%) 103λex(w/mK) 103λTh(w/mK) T (K) 

10.000 7.829 7.0461 200 

10.000 10.950 9.855 250 

10.004 12.525 11.272 273.15 

10.003 14.435 12.991 300 

10.000 19.970 17.973 373.15 

10.002 27.995 25.195 473.15 

11.000 32.092 28.562 523.15 

10.000 44.115 39.704 673.15 

11.001 47.968 42.692 723.15 

10.001 58.816 52.935 873.15 

 
Table 3: Thermal conductivity of the binary mixture R125+R32 at different temperatures with equal mole fractions.  

Theoretical results (λTh) have been compared with the experimental data (λex) (Moghadasi et al. [39]). 

Error (%) 103λex(w/mK) 103λTh(w/mK) T (K) 

10.996 8.694 7.738 200 

9.997 11.703 10.533 250 

11.000 13.291 11.829 273.15 

10.001 15.218 13.696 300 

11.000 20.910 18.610 373.15 

10.002 29.435 26.491 473.15 

11.001 33.807 30.088 523.15 

10.001 46.217 41.595 673.15 

11.000 49.638 44.178 723.15 

10.999 55.813 49.674 873.15 

 
conductivity of R125+R32 at different temperatures  
with equal mole fractions. We have compared our results 
with the available experimental data (Moghadasi et al. [39]). 
In Tables IV to VII, thermal conductivity of several 
refrigerant mixtures like R125+R152a, R134a+R32, 
R134a+R143a, and R152a+R32 has been calculated  
at various temperatures for equal mole fractions.  
The results have been compared with the available 

experimental results (Moghadasi et al. [39]). It should be 
noted that we have reported the computational errors in all 
tables. According to the obtained results, it is deduced 
that the thermal conductivity for all the binary mixtures 
(see Tables 2 to 7) is increased with enhancing 
temperature. Also, the calculated errors show that  
the agreement between our calculations and the 
experimental results is fairly good.  
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Table 4: Thermal conductivity of the binary mixture R125+R152a at different temperatures with equal mole fractions.  
Theoretical results (λTh) have been compared with the experimental data (λex) (Moghadasi et al. [39]). 

Error (%) 103λex(w/mK) 103λTh(w/mK) T (K) 

11.001 8.190 7.289 200 

10.000 11.330 10.197 250 

10.999 12.983 11.555 273.15 

11.003 15.014 13.362 300 

10.000 20.960 18.864 373.15 

10.000 29.820 26.838 473.15 

10.999 34.349 30.571 523.15 

10.001 48.297 43.467 673.15 

10.001 52.975 47.677 723.15 

11.001 65.915 58.664 873.15 

 
Table 5: Thermal conductivity of the binary mixture R134a+R143a at different temperatures with equal mole fractions.  

Theoretical results (λTh) have been compared with the experimental data (λex) (Moghadasi et al. [39]). 

Error (%) 103λex(w/mK) 103λTh(w/mK) T (K) 

10.997 8.448 7.519 200 

10.228 11.429 10.26 250 

9.999 13.031 11.728 273.15 

9.999 15.032 13.529 300 

9.998 20.934 18.841 373.15 

10.999 29.758 26.485 473.15 

9.999 34.184 30.766 523.15 

11.000 46.618 41.490 673.15 

9.999 50.045 45.041 723.15 

11.000 55.619 49.501 873.15 

 
CONCLUSIONS 

In the present work, we have first solved the OZ 
equation using the HNC closure relation for the 
Stockmayer potential. Next, we applied the Vesovic-
Wakeham method to predict the thermal conductivity of 
several refrigerant mixtures. The pseudo-radial 
distribution functions needed for the thermal conductivity 
predictions were determined from the method on the 

solution of the OZ equation by using the HNC closure 
relation. We have showed that the thermal conductivity of 
the Stockmayer fluid can be obtained relatively from 
integral equations method using the HNC closure 
relation. Using the Stockmayer potential model, we have 
evaluated and reported thermal conductivity values for 
several refrigerant mixtures such as R125+R134a, 
R125+R32, R125+R152a, R134a+R32, R134a+R143a, 
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Table 6: Thermal conductivity of the binary mixture R134a+R32 at different temperatures with equal mole fractions. 
Theoretical results (λTh) have been compared with the experimental data (λex) (Moghadasi et al. [39]). 

Error (%) 103λex(w/mK) 103λTh(w/mK) T (K) 

11.005 7.951 7.076 200 

11.004 10.996 9.786 250 

10.002 12.598 11.338 273.15 

11.003 14.596 12.990 300 

9.999 20.562 18.506 373.15 

9.738 29.349 26.491 473.15 

11.000 33.846 30.123 523.15 

9.999 47.003 42.303 673.15 

11.000 51.190 45.559 723.15 

10.000 62.929 56.636 873.15 

 
Table 7: Thermal conductivity of the binary mixture R152a+R32 at different temperatures with equal mole fractions.  

Theoretical results (λTh) have been compared with the experimental data (λex) (Moghadasi et al. [39]). 

Error (%) 103λex(w/mK) 103λTh(w/mK) T (K) 

11.004 9.033 8.039 200 

11.003 12.079 10.750 250 

10.001 13.728 12.355 273.15 

11.001 15.808 14.069 300 

10.001 22.178 19.960 373.15 

11.001 32.043 28.518 473.15 

9.999 37.283 33.555 523.15 

11.000 52.034 46.310 673.15 

9.999 56.144 50.530 723.15 

11.000 63.937 56.904 873.15 

 
and R152a+R32. The results are in fairly agreement with 
recent available results [35]. As can be seen from  
the obtained results in the tables, there is some difference 
for thermal conductivity associated with this method. 
Related to this difference, two points should be clarified:  
i) including all terms in Eq. (18) is not possible and hence 
the thermal conductivity cannot obtain exactly. ii) There 
are different functions in Eq. (18) which have various 
ranges. Hence, at higher temperatures, these functions 
have different values. 

In summary, it is deduced that the integral equation 
method is suitable to predict transport properties of polar 
fluids like thermal conductivity. 
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