Transport Properties of Refrigerant Mixtures: Thermal Conductivity

Document Type: Research Article

Authors

Department of Physics, College of Sciences, Yasouj University, P.O. Box 75914-353 Yasouj, I.R. IRAN

Abstract

In the present work, the integral equations method is used to calculate transport properties of polar fluids. For this goal, we use the Stockmayer potential and examine theoretically the thermal conductivity of several refrigerant mixtures such as R125+R134a, R125+R32, R125+R152a, R134a+R32, R152a+R32, R134a+R143a, and R125+R143a. We solve numerically the Ornstein-Zernike (OZ) equation using the Hypernetted Chain (HNC) approximation  for binary fluid mixtures and obtain the pair correlation functions. Finally, the temperature dependence of thermal conductivity is studied using Vesovic-Wakeham method and compared with available results. 

Keywords

Main Subjects


[1] Hansen J.P., MacDonald I.R., "Theory of Simple Liquids", Academic, London, (1986).
[2] Gray C.G., Gubbins K. E., "Theory of Molecular Fluids", Oxford University, London, (1984).
[5] Moradi M., Khordad R., Direct cCorrelation Functions of Binary Mixtures of Hard Gaussian Oerlap Molecules, J. Chem. Phys. 125: 214504-214510 (2006).
[6] Zhou X., Chen H., Iwamoto M., Orientational Order in Binary Mixtures of Hard Gaussian Overlap Molecules, J. Chem. Phys. 120:1832-1838 (2004).
[7] Gay J.G., Berne B.J., Modification of the Overlap Potential to Mimic a Linear Site-Site Potential, J. Chem. Phys. 74: 3316-3322 (1981).
[8] Khordad R., Viscosity of Lennard-Jones Fluid: Integral Equation Method, Physica A 387: 4519-4530 (2008).
[9] Papari M. M., Khordad R., Akbari Z., Further Property of Lennard-Jones Fluid: Thermal Conductivity, Physica A, 388: 585-592 (2009).
[10] Khordad R., Hosseini F., Papari M. M., Shear Viscosity of Stockmayer Fluid: Application of Integral Equations Method to Vesovic-Wakeham Scheme, Chem. Phys., 360: 123-131 (2009).
[12] Klapp S.H., Patey G.N., Integral Equation Theory for Dipolar Hard Sphere Fluids with Fluctuating Orientational Order, J. Chem. Phys. 112: 3832-3839 (2000).
[13] Wei D., Patey G. N., Perera A., Orientational Order in Simple dDipolar Fluids: Density-Functional Theory and Absolute-Sability Cnditions, Phys. Rev. E, 47: 506-512 (1993).
[15] Onsager L., Electric Moments of Molecules in Liquids, Am. J. Chem. Soc. 58: 1486-1493 (1936).
[16] Henderson D., Boda D., Szalai I., The Mean Spherical Approximation for a Dipolar Yukawa Fluid, Chan K.Y., J. Chem. Phys. 110: 7348-7355 (1999).
[17] Perera A., Patey G.N., Fluids of Dipolar Hard Ellipsoids: Structural Properties and Isotropic-Nematic Phase Transitions, J. Chem. Phys. 91: 3045-3050 (1989).
[18] Rowlinson J. S., Swinton F. L., "Liquids and Liquid Mixtures", 3rd ed. Butterworth Scientific, London, (1982).
[19] Allen M.P., Tildesley D.J., "Computer Simulation of Liquids", Oxford University, Press, Oxford, (1987).
[20] Frenkel D.A., Smit B., "Understanding Molecular Simulations", Acasemic Press, (1996).
[21] Sadus R., Molecular Simulation of Fluids. «Theory Algorithms and Object Orientation», Eleveier, (1999).
[22] Alavi Fazel S.A., Jamialahmadi M., Safekordi A. K., Experimental Investigation in Pool Boiling Heat Transfer of Pure/Binary Mixtures and Heat Transfer Correlations, Iran. J. Chem. Chem. Eng. (IJCCE), 27: 135-150 (2008).
[23] Khorsand Movagar M.R., Rashidi F., Goharpey F., Mirzazadeh M., Aman E., Effect of Elasticity Parameter on Viscoelastic Fluid in Pipe Flow Using Extended Pom-Pom Model,Iran. J. Chem. Chem. Eng. (IJCCE), 29: 83-94 (2010).
[24] Ziabasharhagh M., Mosallat F., Shahnazari M. R., Experimental Investigation of the Permeability and Inertial Effect on Fluid Flow through Homogeneous Porous Media, Iran. J. Chem. Chem. Eng. (IJCCE), 27: 33-38 (2008).
[25] Ghazanfari M.H., Rashtchian D., Kharrat R., Vossough S., Transport Property Estimation of Non-Uniform Porous Media, Iran. J. Chem. Chem. Eng. (IJCCE),  28: 28-42 (2009).
[29] Gao G.T., Wang W., Zeng X.C., Gibbs Ensemble Simulation of HCFC/HFC Mixtures by Effective Stockmayer Potential, Fluid Phase Equilib. 158: 69-78 (1999).
[30] Edmonds A.R., "Angular Momentum in Quantum Mechanics", Princeton U. P., Princeton: NJ, (1960).
[33] Sandler S. I., Fiszdon J. K., On the Viscosity and Thermal Conductivity of Dense Gases, Physica A, 95: 602-608 (1979).
[34] Vesovic V., Wakeham W. A., The Transport Properties of Ethane. II. Thermal Conductivity, High Temp. High Press., 23: 179-192 (1991).
[35] Mason E. A., Khalifa H. E., Kestin J., Dipippo R., Dorfman J. R., Composition Dependence of the Thermal Conductivity of Dense Gas Mixtures, Physica A, 91: 377-392 (1978).
[36] Degreve L., Henderson D., Monte Carlo Study of the Adsorption Layers of Hard Spheres Near Large Hard Spheres of Varying Radii, J. Chem. Phys. 100: 1606-1611 (1994).
[37] Royal D.D., Vesovic V., Trusler J.P.M., Wakeham W.A., Predicting the Viscosity of Liquid Refrigerant Blends: Comparison with Experimental Data, Int. J. Refrigeration, 28: 311-319 (2005).
[38] Royal D.D., Vesovic V., Trusler J.P.M., Wakeham W.A., Prediction of the Viscosity of Dense Fluid Mixtures, Mol. Phys., 101: 339-352 (2003).
[39] Moghadasi J., Aghaei D. M., Papari M. M., Predicting Gas Transport Coefficients of Alternative Refrigerant Mixtures, Ind. Eng. Chem. Res., 45: 9211-9223 (2006).