Biosorption of Uranium (VI) from Aqueous Solution by Pretreated Aspergillus niger Using Sodium Hydroxide

Document Type : Research Article

Authors

Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11365-9465, Tehran, I.R. IRAN

Abstract

The removal of uranium and any other heavy metals from wastewater might be achieved via several chemical or physical treatment techniques. Biosorption process has been considered as a potential alternative way to remove contaminants from industrial effluents. Moreover the surface of biosorbent was characterized by SEM. The biosorption characteristics of uranium (VI) on pretreated A. niger were evaluated as a function of pH (3.0-7.0), biomass concentration (0.05-0.4 g dry biomass/100 mL), initial uranium concentration (10-500 mg/L) and contact time (30-1440 min). The results revealed that the optimum pH was 5.0 for the adsorption of U(VI) by pretreated  A. niger. The maximum adsorption capacity of U (VI) by pretreated A. niger in concentration less than 100mg/L uranium was increased significantly in comparison with live and dead biomass of  A. niger. The metal removal was rapid with 86.4% metal sorption (43.2 mgU/g dry biomass) taking place in 30 min and the equilibrium was achieved in 240 min. The maximum uranium removal was 98.43% (16.41 mgU/g dry biomass) in concentrations 0.3g dry biomass/100mL. Adsorption process could be well defined by Langmuir isotherm with R2 values 0.985. The kinetic data fitted through the pseudo-second-order kinetic model with the R2 value of 0.998.

Keywords

Main Subjects


[1] Bai J., H Yao F., Fan M., Lin L., Zhang H., Biosorption of Uranium by Chemically Modified Rhodotorula Glutinis, J. Environ. Radioact., 101: 969-973 (2010).
[2] Bai R.S., Abraham, T.E., Studies on Enhancement of Cr(VI) Biosorption by Chemically Modified Biomass of Rhizopus Nigricans, Water Res., 36: 1224-1236 (2002).
[3] Anke M., Seeber O. , Müller R., Schäfer U., Transfer in the Food Chain from Soil to Plants, Animals and Man, Geo chem. J. , 69:75-90 (2009).
[4] Samson R.A., Houbraken J., Summerbell R.C., Flannigan  B., Miller J.D., Common and Important Species of Fungi and Actinomycetes in Indoor Environments. In: Microogranisms in Home and Indoor Work Environments, Taylor and Francis Journal, 61: 287–292 (2001).
[5] Dursun A., Comparative Study on Determination of the Equilibrium, Kinetic and Thermodynamic Parameters of Biosorption of Copper (II) and Lead (II) Ions Onto Pretreated, Aspergillus niger, Biochem. Eng. J., 28: 187-195 (2006).
[6] Muhamad H., Doan H., Lohi A., Batch and Continuous Fixed-Bed Column Biosorption of Cd2+ and Cu2+, Chem. Eng. J.,  158: 369-377 (2010).
[7] Kalantari H., Yaghmaei S., Roostaazad R., Mohammad Beigi H., Removal of Zirconium  from Aqueous Solution by Aspergillus niger, SCI Iran J., 21(3): 772-780 (2014).
[8] Naddafi K., Nabizadeh R., Saeedi R., Mahvi A. H., Vaezi F., Yaghmaeian K., Ghasri A., Nazmara S., Biosorption of Lad(II) and Cadmium(II) by Protonated Sargassum Glaucescens Biomass in a Continuous Packed Bed ColumnJ. Hazard. Mater., 147: 785-791(2007).
[9] Bashardoost R., Vahabzadeh  F., Shokrollahzadeh S., Sorption Performance of Live and Heat-Inactivated Loofa-Immobilized Phanerochaete chrysosporium in Mercury Removal from Aqueous Solution, Iran. J. Chem. Chem. Eng. (IJCCE), 29(4): 79-89 (2011).
[10] Kuber C., Bhainsa S.F., D’Souza., Removal of Copper Ions by the Filamentous Fungus, Rhizopus Oryzae from Aqueous Solution, Bioresour. Technol., 99: 3829-3835 (2008).
[11] Khani M.H.; Keshtkar  A.R.; Meysami  B.; Zarea, M.F.; Jalali, R., Biosorption of Uranium from Aqueous Solutions by Nonliving Biomass of Marinealgae Cystoseira Indica, Electron. J. Biotechnol.,  9: 100-106 (2006).
[12] Akar  T., Tunali S., Kiran  I., Botrytis Cinerea as a New Fungal Biosorbent for Removal of Pb(II) from aqueous solutions, Biochemistry Eng. J., 25: 227-235(2005).
[13] Ahluwalia S.S., Goyal  D., Microbial and Plant Derived Biomass for Removal of Heavy Metals from Wastewater, Bioresour. Technol. 98: 2243-2257(2007).
[14] Cabuk  A., Ilhan  S., Filik C., Caliskan  F., Pb2+ Biosorption by Pretreated Fungal Biomass, Turk. J. Biol., 29: 23-28(2005).
[15] Yan G., Viraraghavan  T., Heavy Metal Removal from Aqueous Solution by Fungus Macro Rouxii , Water. Res,  37:4486-4496 (2003).
[17] Margarete Kalin W. N., Wheeler G., The Removal of U from Mining Wastewater Using Algal/Microbial Biomass, J. Environ. Radioact, 78: 151-177(2004).
[18] Nuhoglu  Y., Oguz  E., Removal of Copper (II) from Aqueous Solutions by Biosorption on the Cone Biomass of Thujaorientalis, Process. Biochem., 38: 1627-1631 (2003).
[19] Holan Z.R., Volesky B., Accumulation of Cadmium, Lead, and Nickel by Fungal and Wood Biosorbents,   Appl. Biochem. Biotechnol., 53 : 133-146 (1995).
[20] Mulder E.G., Sur l'influence de Cuivre Sur La Croissance Des Microorganisms,  Ann Ferm.n.s., 4 : 513-533(1938).
[21] Mukhopadhyay M., Noronha S. B., Suraishkumar G.K., Kinetic Modeling for the Biosorption of Copper by Pretreated Aspergillus Niger Biomass, Bioresour. Technol.,  98: 1781–1787 (2007).
[22] Tsekova K., Todorova D., Dencheva V., Ganeva S., Biosorption of Copper (II) and Cadmium (II) from Aqueous Solutions by Free and Immobilized Bbiomass of Aspergillus Niger, Bioresour. Technol., 101: 1727-1731 (2010).
[23] Dajjanutat  P.,  Promkotras  S.,  Kaewkan netra  P., Biosorption and Desorption of Cadmium from Contamitated Water Using Kaialgae of Cladophora spp  as Biosorption in Biofilter, Queen Siriki National Conversion Center Bangkok Thailand, 52: 72-80 (2009).
[24] Jianlong W., Xinmin Z., Decai D., Ding Z., Bio Absorption of Lead (II) from Aqueous Solution by Fungal Biomass of Aspergillus. Niger., Biotechnol. J., 87: 273-277 (2001).
[25] Ahmad  I. M., Ansari  I., Aqil  F., Biosorption of Cr and Cd by Metal Tolerant Aspergillus sp and  Penicillium sp Using Single and Multi-Metal Solution, Indian J. Exp. Biol,. 44(1):73-76 (2006).
[26] Chubar N., Carvalho J.R., Correia M.J.N., Heavy Metals Biosorption on Cork Biomass Effect of the Pretreatment, Physicochem. Eng. J., 238: 51-58 (2004).
[27] Kurniawan  T., Chan G., Lo W., Babel  S., Physico-Chemical Treatment Techniques for Waste Water Laden with Heavy Metals, Chem. Eng. J., 118: 83-98 (2006).
[28] Narsi  R., Bishnoi G., Fungus-an Alternative for Bioremediation of Heavy Metal Containing Wastewater, A review, J. Sci. Ind. Res., 64: 93-100 (2005).
[29] Dang V. H., Doan H. D., Dang T., Lohi A., Equilibrium and Kinetics of Biosorption of Cadmium (II) and Copper (II) Ions by Wheat Straw, Bioresour. Technol., 54: 102-112 (2008).
[30] Li  X., Liao D., Xu X., Yang  Q., Zerg  G., Zheng  W., Guo  L., Kinetic Studies for the Biosorption of Lead and Copper Ions by Penicillium Sinplicissimum Immobilized Biomass, J. Hazard. Mater., 73: 234-241 (2008).
[31] Çabuk  A., Akar T., Tunali  S., Gedikli S., Biosorption of Pb(II) by Industrial Strain Saccharomyces Cerevisiae Immobilized on the Biomatrix of Cone Biomass of Pinus Nigra: Equilibrium and Mechanism Analysis, Chem. Eng. J., 131: 293–300(2007).
[32] Gok C., Aytas S., Biosorption of U (VI) from Aqueous Solution Using Calcium Alginate Beads, J. Hazard. Mate., 168: 369-375 (2009).
[33] Parab H., Joshi S., Shenoy N., Verma R., Lali A., Sudersanan M., U Removal from Aqueous Solution by Coir Pith: Equilibrium and Kinetic Studies, Bioresour. Technol., 96: 1241-1248 (2005).
[34] Barnett M.O., Jardine P.M., Brooks S.C., Selim H.M., Adsorption and Transport of U(VI) in Subsurface MediaSoil Sci. Soc. Am. J., 64: 908-917 (2002).
[35] Khani M.H., Keshtkar A.R., Ghannadi M., Pahlavanzadeh H., Equilibrium Kinetic and Thermodynamic Study of the Biosorption of U Onto Cystoseria Indica Algae, J. Hazard. Mater., 150: 612-618 (2008).
[36] Saxena S., Prasad M., D’Souza S.F., Radiionuclide Sorption Onto Low-Cost Mineral Adsorbent, Ind. Eng. Chem. Res., 45: 9122-9128 (2006).
[37] Vikas S., Bhat a.b., Meloa J.S., Chaugule  B.B., D’Souza S.F., Biosorption Characteristics of U (VI) from Aqueous Medium Onto Catenella Repens a Red Alga, J. Hazard. Mate., 158: 628-635 (2008).
[38] Sana S., Roostaazad R., Yaghmaei S., Biosorption of Uranium from Aqueous Solution by Live and Dead Aspergillus Niger, J. Hazard. Toxic Radioact. Waste., 18(3),(july2014).
[39] Lebeau T., Bagot  D., Jézéquel K., Fabre  B., Cadmium Biosorption by Free and Immobilised Microorganisms Cultivated in a Liquid Soil Extract Medium: Effects of Cd, pH and Techniques of Culture, Sci. Total. Environ., 291: 73-83 (2002).
[40] Cui Panga b.c., Yun.Hai  L. A., Xiao Hong  C., Min  L., Gou Lin  H., Rong  H., Biosorption of U(VI) from Aqueous Solution by Dead Fungal Biomass of Penicillium Citrinum., Chem. Eng. J., 170: 1-6 (2011).
[41] Ulay G., Glu  B., Elik G.C.,  Arica M.,  Studies on Accumulation of Uranium by Fungus Lentinus Sajor-Caju, Journal of Hazardous Materials,136 : 345–353 (2006).
[42] Xie  S., Yang  J., Chen  C., Zhang  X., Wang  Q., Zhang C., Study on Biosorption Kinetics an Thermodynamics of Uranium by Citrobacter Freudii, Journal of Environmental, 21: 296-302 ( 2008).
[43] Volesky B., Biosorption Process Simulation Tools, Original Research Article Hydrometallurgy, 71:179-190 (2003).
[44] Ho Y.S.,  McKay G., Pseudo-Second Order Model for Sorption Processes, Process Biochem., 34:451-46 (1999).
[45] Bhat S. V., Melo  J.S,. Chaugule B.B., D’Souza S.F., Biosorption Characteristics of Uranium(VI) from Aqueous Medium onto Catenella Repens  a Red AlgaJ.Hazard. Mate.,158:628-635 (2008).
[46] Wang J.S., Hu  X.J., Liu Y.G.,  Xie S.B., Bao Z.L., Biosorption of Uranium (VI) by Immobilized Aspergillus Fumigatus Beads, Chem. Eng. J., 170: 1–6 (2011).