Application of Response Surface Methodology for Catalytic Hydrogenation of Nitrobenzene to Aniline Using Ruthenium Supported Fullerene Nanocatalyst

Keypour, Hassan*
Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 65175 Hamedan, I.R. IRAN

Noroozi, Mohammad
Center for Research and Development of Petroleum Technologies at Kermanshah, Research Institute of Petroleum Industry (RIPI), Kermanshah, I.R. IRAN

Rashidi, Alimorad
Research Institute of Petroleum Industry (RIPI), P.O. Box 14665 Tehran, I.R. IRAN

Shariati Rad, Masoud
Faculty of Chemistry, Razi University, P.O. Box 6714 Kermanshah, I.R. IRAN

ABSTRACT: In this study fullerene functionalized using oleum (H\textsubscript{2}SO\textsubscript{4}·SO\textsubscript{3}), followed by the hydrolysis of the intermediate cyclosulfated fullerene as well as an oxidizing agent was employed to functionalize the fullerenes. Ruthenium was then added by the impregnation method or deposited on the functionalized fullerene. Subsequent to this step, Response Surface Methodology (RSM) was used to study the cumulative effect of various parameters including, pressure, temperature, time and loading. In order to maximize the hydrogenation of nitrobenzene (NB) to aniline (AN) these latter parameters were optimized. Furthermore, catalytic activity was evaluated over a temperature range of 25–150°C, hydrogen pressure of 1-30 atm, ruthenium content of 1-15%(w/w) and reaction time of 30-180 min in a bench scale reactor. The optimized model predicted that the hydrogenation should be at a maximum level (approximately 100%) with the following conditions; Ru loading of 15%, reaction temperature of 150 °C, reaction time of 180 min and hydrogen pressure of 22.33 atm.

KEY WORDS: Hydrogenation, Nitrobenzene, Aniline, Ruthenium, Fullerene, Response surface methodology.

INTRODUCTION
Around 85% of aniline is produced via the hydrogenation of nitrobenzene (NB) [1-3], which can be performed in gas or liquid phase using supported metal catalysts and organic solvents such as alcohols, acetone,

* To whom correspondence should be addressed.
E-mail: haskey1@yahoo.com
1021-9986/15/1/21 12/8/3.20
benzene, ethyl acetate, or aqueous acidic solutions [4,5], electrochemical synthesis and iron based reduction in acidic media [6]. The commercial process of highly exothermic catalytic hydrogenation (ΔH = -544 kJ/mol at 200°C) of nitrobenzene was performed in both vapor and liquid phases. Generally, nitrobenzene is hydrogenated to aniline with the yield of 99% using fixed-bed or fluidized-bed vapor-phase process. Apparently, the most effective catalysts for gas-phase hydrogenation of nitrobenzene are copper or palladium on activated carbon in combination with other metals (Pb, V, Cr) as modifiers to achieve a higher activity and selectivity [6-10]. Generally, the liquid-phase hydrogenation process is operated at temperature of 90 – 200 °C and pressure of 100 – 600 KPa. Also, the liquid phase reaction may be carried out in slurry or in fluidized-bed reactors [11]. Moreover, the hydrogenation of nitrobenzene was also carried out by DuPont in liquid phase using platinum – palladium catalyst on a carbon support with iron as a modifier [12, 13]. Chun-Hua Li & Co-workers also carried out hydrogenation of nitrobenzene with the use of Pt/CNT under mild conditions [14]. The obtained aniline from the hydrogenation of NB was then purified by means of a single-step or multi-step distillation process in which aqueous alkali metal hydroxide solution is added to the raw aniline prior to the distillation process [15]. Catalysis has been considered as one of the various possible applications of fullerenes which generate pathways of research with different directions. These can be categorized in three main groups: (i) the use of C60 as a catalyst [16-18]; (ii) the use of C60 as a ligand for homogeneous catalysts [19]; (iii) the use of fullerenes as a support medium for heterogeneous catalysis [20-24]. There have been few investigations in relation to the application of the mentioned materials as catalysts or catalyst supports [25]. In the field of heterogeneous catalysis, numerous carbon materials have been applied to disperse and stabilize nano-sized metallic particles [26]. The Catalytic properties of these solids are known to be dependent on the interaction between the carbon support and metal particles [27, 28]. Solid-state chemistry of fullerene-based materials has gain much interest due to the novel electronic and structural properties of these compounds [29]. In the current paper, the fullerene is used as a support medium for metal catalyst. To investigate the simultaneous influence of pressure, temperature, time and metal loading percentage on the yield of reaction and also determining the best reaction conditions, Design Of Experiments (DOE) was used. It is notable that the optimization of these parameters required several experiments. Thus, the required numbers of experiments can be reduced by the use of experimental design techniques [30-32]. Central Composite Design (CCD) is an efficient experimental strategy for evaluating the optimum conditions in a multivariable system.

The purpose of the present study is to synthesis fullerene (C60)-based ruthenium nanocatalyst that is used for the catalytic hydrogenation of nitrobenzene to aniline. In this study, a new method (involves a combination of impregnation, ultrasound and reduction methods) was used to produce these catalyst and an oxidizing agent was employed to functionalize the fullerenes.

EXPERIMENTAL SECTION

Fullerene (C60) was purchased from Sigma-Aldrich Chemise GmbH Company (purity 99%). Solvents and metal salts were purchased from Merck and Alderich, respectively. All materials were employed without further purification. The detection was performed with IR spectra; Shimadzu Fourier Transform Infrared spectra (FT-IR) 8400, FT-NMR Jeol 90 MHz, and SRI8610C Gas Chromatography (GC).

Pretreatment of fullerene

The procedures were briefly summarized as follows: A reaction flask (50 mL) charged with 1.0 g fullerene and fuming sulfuric acid (15 mL) was stirred at 55 – 60 °C under N2 for 3 days to give a dark brown solution with orange suspensions. The resulting mixture was added dropwise into anhydrous diethyl ether (200 mL) with vigorous stirring in an ice bath to cause the precipitation of products. Precipitates were separated from solution by the centrifuge technique. They were then washed and centrifuged three times with anhydrous diethyl ether and twice with 2:1 anhydrous diethyl ether-acetonitrile and dried in vacuum at 40 °C to afford a brown-orange solid of polycyclosulfated fullerene derivative 2 (1.3 g). A reaction flask (100 mL) equipped with a condenser and an inert gas bubbler was charged with polycyclosulfated fullerene derivative 2 (1.0 g) and distilled water (20 mL). The mixture was stirred at 85 °C under N2 for 10 h to give a dark brown suspension. The suspended solid was separated from aqueous solution by centrifugation followed by washing twice with water and drying in vaccum at 40 °C to afford a brown solid of polyhydroxylated fullerene derivative 3 (fullerenol)[33].
Table 1: Dispersion values of the Ru supported on fullerene (C60).

<table>
<thead>
<tr>
<th>Catalysts</th>
<th>Raw material for metal</th>
<th>Volume of metal salt solution (mL)</th>
<th>Metal loading (w/w %)</th>
<th>Loading efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Calculated</td>
<td>Found*</td>
</tr>
<tr>
<td>Ru-1</td>
<td>RuCl3, 3H2O (4.95 × 10^-3 M)</td>
<td>10</td>
<td>1</td>
<td>0.92</td>
</tr>
<tr>
<td>Ru-8</td>
<td></td>
<td>80</td>
<td>8</td>
<td>7.49</td>
</tr>
<tr>
<td>Ru-15</td>
<td></td>
<td>150</td>
<td>15</td>
<td>14.75</td>
</tr>
</tbody>
</table>

* As determined by AAS for catalyst

Scheme 1: preparation of fullerenol.

Preparation of catalysts

Pre-treated fullerene (0.5 g) were first mixed with 10, 80 or 150 mL of aqueous solution of the metal salt RuCl3.3H2O (4.95 × 10^-3 M), to obtain catalysts containing 1, 8 or 15% Ru/C60, respectively (Table 1). In order to enhance penetration and dispersion of metal into the catalyst, citric acid (0.015 mol) was added to each solution [34, 35]. By adding appropriate amount of ethanol-water (1:3 ratio), the final volume will be increased up to 200 mL. Each suspension was completely mixed at 50°C in the periodic 6 h with vigorous stirring and then sonicated to form a uniform suspension for 30 min in ultrasonic bath (1.6 MHz). Subsequently, it was cooled in a cold water bath, filtered and finally washed with a large amount of ethanol and deionized water. Elemental analysis was applied to determine the trace of metal species, indicated the fact that all metal particles were adsorbed on the support surface completely. In order to remove the solvent, the resulting slurry was dried at 100 °C, and then was calcinated in air at 500°C for 4 h. As a result, the obtained samples were reduced with pure H2 (400 mL/min) at 300°C and atmospheric pressure for 3 h. Finally, the percentage of metal loading in the catalysts was measured by atomic absorption spectrophotometer (AAS) (Table 1).

Catalyst characterization

The Transition Electron Microscopy (TEM) images were taken on a Philips CM120 at an accelerating voltage of 120Kv. Thermogravimetric analysis (TGA) of the dried samples was performed on a Metter Toledo TGA SDTA 851e at the temperature range of 30 - 800 °C and the rate of 10 °C/min. X-Ray powder Diffraction (XRD) analysis was conducted by Philips instrument with graphite monochromatic Cu Kα radiation (λ = 1.5418 Å) to confirm the formation of products.

The quantitative determination of active catalyst was carried out by a SHIMADZU AA-6100 atomic absorption spectrometer by dissolving the samples in a mixture of HCl and HNO3 with the 3:1 ratio at 40°C for 24 h. Gas chromatography (GC) was carried out by SRI with a Flame Ionization Detector (FID) and the following conditions: injector 250 °C, FID, 250 °C, column MXT -624 (6% Cyanopropyl phenyl, 94% dimethyl polysiloxane, 30 meter, 0.53 mm ID) and column temperature program 100 to 215°C with the rate of 5°C/min, Carrier gas: helium, sample size: 0.1 µL and total cycle time, 23 min.

Catalytic test

Reactor reaction

0.1 g the of synthesized catalyst Ru/C60 was introduced into a 100 mL stainless steel autoclave reactor and reduced under the flow of H2 at 300 °C for 1 h. Then 2 mL of nitrobenzene (extra pure) and 10 mL of toluene (Merck, extra pure), was added to the reactor as a solvent. In the aim of removing any oxygen, the mixture
was purified with N₂ for 10 min. The reaction was carried out in different conditions; hydrogen pressure (1-30 bar), temperature (25-150 ºC), and duration (30-180 min). The yield of hydrogenation was then determined by GC.

Central composite design analysis and optimization of the response surface methodology associated with the hydrogenation of nitrobenzene

The effect of various parameters, including, initial pressure of hydrogen (P), temperature (T), reaction time and the amount of loading (L) of ruthenium in the catalyst on the hydrogenation efficiency of NB to AN was studied by statistically designed experiments and optimized by response surface methodology. A central composite design with \(\alpha = 1 \) and one replicate at the center point, resulting in experiments for each catalyst which covers the entire range of variables, were used to optimize the chosen key variables for the hydrogenation of NB using batch reactor.

The design package Minitab 14 is a statistical program package that was used for the regression analysis of the obtained data. Moreover, this design evaluates the coefficient of the regression equation. The equation was confirmed by the analysis of variance (ANOVA) to determine the significance fitness of each term in the equations and to estimate goodness of fit in each case. Conditions of the hydrogenation were as follows; pressure, temperature, time, and catalyst metal loading. In the current study, these conditions were varied from 1 to 30 atm, 25 to 150 ºC, 30 to 180 min, and 1 to 15 % respectively. Low, middle and high levels of each variable were determined as 1, 0 and +1, respectively. Coded and actual values of four independent variables of Ru along with the response for Response Surface Methodology (RSM) are shown in Table 2.

RESULTS AND DISCUSSION

Thermogravimetric analysis

The thermal analysis data in inert atmosphere (N₂) are shown in Fig. 1. This curve is related to ruthenium catalyst with 15% loading. Two main weight loss regions were observed in this figure. The first weight loss occurred at a temperature range of 100ºC - 650ºC and was moderate. Another weight loss was observed the temperature range of 660 ºC -750ºC. Results show that solvent losses such as water and organic solvents in catalyst starting at 100°C and carbon cage and amorphous carbon decomposing at 650°C [34]. The remaining weight percent up to the temperature of 800 °C is equal to 80.81. High level of residual mass may be due to the presence of metal installed on the fullerene, perform TGA under nitrogen atmosphere and the calcined in air at 550 ºC for 4 h.

X-ray Diffraction analysis

The crystalline structure of the catalyst was obtained using powder XRD. The typical XRD pattern of Ru/C₆₀ is presented in Fig. 2. The assignment of the various crystalline phase was based on the JPDS powder diffraction file card [37]. The particle size of each phase was calculated from the line broadening of the most intense reflections using the Scherrer equation. Estimated errors of the particle sizes and relative percentage of different phase is about of 10% [38-41].

The XRD pattern obtained for the Ru/C₆₀ showed lower crystallinity. The peaks at a 2θ: 38.6, 42.3, 44 and 58.3
Table 2: Central composite design matrix, levels of the variables, observed and predicted responses for the hydrogenation of nitrobenzene to aniline by Ru catalyst.

<table>
<thead>
<tr>
<th>Run no.</th>
<th>Pressure (atm)</th>
<th>Temperature (ºC)</th>
<th>Time (min)</th>
<th>Loading (%)</th>
<th>Hydrogenation efficiency %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Founda</td>
</tr>
<tr>
<td>1</td>
<td>30.0</td>
<td>25.0</td>
<td>30</td>
<td>15</td>
<td>73</td>
</tr>
<tr>
<td>2</td>
<td>15.5</td>
<td>87.5</td>
<td>105</td>
<td>8</td>
<td>65</td>
</tr>
<tr>
<td>3</td>
<td>30.0</td>
<td>150.0</td>
<td>180</td>
<td>1</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>30.0</td>
<td>25.0</td>
<td>180</td>
<td>1</td>
<td>67</td>
</tr>
<tr>
<td>5</td>
<td>15.5</td>
<td>87.5</td>
<td>30</td>
<td>8</td>
<td>61</td>
</tr>
<tr>
<td>6</td>
<td>30.0</td>
<td>150.0</td>
<td>30</td>
<td>15</td>
<td>93</td>
</tr>
<tr>
<td>7</td>
<td>15.5</td>
<td>87.5</td>
<td>105</td>
<td>8</td>
<td>68</td>
</tr>
<tr>
<td>8</td>
<td>15.5</td>
<td>150.0</td>
<td>105</td>
<td>8</td>
<td>69</td>
</tr>
<tr>
<td>9</td>
<td>15.5</td>
<td>87.5</td>
<td>105</td>
<td>8</td>
<td>65</td>
</tr>
<tr>
<td>10</td>
<td>1.0</td>
<td>150.0</td>
<td>180</td>
<td>15</td>
<td>82</td>
</tr>
<tr>
<td>11</td>
<td>30.0</td>
<td>25.0</td>
<td>30</td>
<td>1</td>
<td>56</td>
</tr>
<tr>
<td>12</td>
<td>30.0</td>
<td>150.0</td>
<td>30</td>
<td>1</td>
<td>58</td>
</tr>
<tr>
<td>13</td>
<td>15.5</td>
<td>87.5</td>
<td>180</td>
<td>8</td>
<td>74</td>
</tr>
<tr>
<td>14</td>
<td>1.0</td>
<td>25.0</td>
<td>30</td>
<td>1</td>
<td>38</td>
</tr>
<tr>
<td>15</td>
<td>15.5</td>
<td>87.5</td>
<td>105</td>
<td>8</td>
<td>68</td>
</tr>
<tr>
<td>16</td>
<td>1.0</td>
<td>150.0</td>
<td>30</td>
<td>1</td>
<td>45</td>
</tr>
<tr>
<td>17</td>
<td>15.5</td>
<td>87.5</td>
<td>105</td>
<td>1</td>
<td>67</td>
</tr>
<tr>
<td>18</td>
<td>1.0</td>
<td>25.0</td>
<td>30</td>
<td>15</td>
<td>58</td>
</tr>
<tr>
<td>19</td>
<td>30.0</td>
<td>25.0</td>
<td>180</td>
<td>15</td>
<td>83</td>
</tr>
<tr>
<td>20</td>
<td>1.0</td>
<td>150.0</td>
<td>180</td>
<td>1</td>
<td>54</td>
</tr>
<tr>
<td>21</td>
<td>1.0</td>
<td>87.5</td>
<td>105</td>
<td>8</td>
<td>59</td>
</tr>
<tr>
<td>22</td>
<td>30.0</td>
<td>87.5</td>
<td>105</td>
<td>8</td>
<td>69</td>
</tr>
<tr>
<td>23</td>
<td>30.0</td>
<td>150.0</td>
<td>180</td>
<td>15</td>
<td>98</td>
</tr>
<tr>
<td>24</td>
<td>1.0</td>
<td>25.0</td>
<td>180</td>
<td>15</td>
<td>74</td>
</tr>
<tr>
<td>25</td>
<td>15.5</td>
<td>25.0</td>
<td>105</td>
<td>8</td>
<td>85</td>
</tr>
<tr>
<td>26</td>
<td>1.0</td>
<td>150.0</td>
<td>30</td>
<td>15</td>
<td>73</td>
</tr>
<tr>
<td>27</td>
<td>15.5</td>
<td>87.5</td>
<td>105</td>
<td>8</td>
<td>76</td>
</tr>
<tr>
<td>28</td>
<td>15.5</td>
<td>87.5</td>
<td>105</td>
<td>8</td>
<td>76</td>
</tr>
<tr>
<td>29</td>
<td>1.0</td>
<td>25.0</td>
<td>180</td>
<td>1</td>
<td>48</td>
</tr>
<tr>
<td>30</td>
<td>15.5</td>
<td>87.5</td>
<td>105</td>
<td>8</td>
<td>76</td>
</tr>
<tr>
<td>31</td>
<td>15.5</td>
<td>87.5</td>
<td>105</td>
<td>15</td>
<td>80</td>
</tr>
</tbody>
</table>

Factors	Levels
Pressure (atm) | -1 | 0 | 1
Temperature (ºC) | 1.0 | 15.5 | 30.0
Time (min) | 30 | 105 | 180
Loading (%) | 1.0 | 8.0 | 15.0

"a" For the hydrogenation of nitrobenzene to aniline by Ru catalyst.
which agree well with the known diffraction pattern of ruthenium (JCPDS 6-663). The obtained cluster size of ruthenium nanoparticles using the Scherrer formula is 20.3 nm.

Transmission Electron Microscopy (TEM)

The estimation of the average ruthenium particle size was carried out by TEM for catalyst. Average metal particle size of Ru was 15.7 nm. The particle size of large metals in the former catalyst were determined by TEM and XRD data. Fig. 3 shows the TEM image of a catalyst. As observed in this figure, most of the ruthenium particles were located on the external surface of the fullerene.

FT-IR spectroscopy

The FT-IR spectra of the solvent, reactant and product are shown in Fig. 4. A mixture of reactants containing toluene and NB are shown in Fig. 4a. Fig. 4b illustrates that the new peaks at 3100-3500 cm\(^{-1}\) are associated to the N-H stretching region. Two bands were appeared at 3400 and 3300 cm\(^{-1}\) indicating the fact that the product is a primary amine. The high frequency band is related to the asymmetric vibration, while, the low frequency band is related to the symmetric vibration. The low intensity shoulder is due to the N-H asymmetric vibration band which appears at 3200 cm\(^{-1}\), and the symmetric vibration appears around 1600 cm\(^{-1}\). A broad (medium to strong intensity) peak appeared in 1640-1560 cm\(^{-1}\), which belongs to the N-H bending mode. An out of plane N-H bending vibration appears as a broad band at 800 cm\(^{-1}\). The C-N stretching absorption emerges within the range of 1350-1250 cm\(^{-1}\) [42].

Efficiency of hydrogenation

1 µL of pure nitrobenzene, aniline and toluene were injected separately into the GC column and the spectra of each samples show a peak with clear retention time. Then 1 µL of the mixture was injected to the reactor and the obtained spectra compared with the spectra of pure nitrobenzene, aniline and toluene. By dividing the area under the peak of aniline (Aa) to the total area of aniline and nitrobenzene peaks (At), and multiply the resulting number to 100 (Eq.1)

The hydrogenation efficiency can be calculated by the following method. First, at the set-up process, various
Application of Response Surface Methodology...

Table 3: Analysis of Variance for Efficiency (%).

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Seq SS</th>
<th>Adj SS</th>
<th>Adj MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>14</td>
<td>4867.3</td>
<td>4867.3</td>
<td>347.66</td>
<td>7.14</td>
<td>0.000</td>
</tr>
<tr>
<td>Linear</td>
<td>4</td>
<td>4469.0</td>
<td>565.5</td>
<td>141.37</td>
<td>2.90</td>
<td>0.055</td>
</tr>
<tr>
<td>Square</td>
<td>4</td>
<td>248.5</td>
<td>248.5</td>
<td>62.13</td>
<td>1.28</td>
<td>0.320</td>
</tr>
<tr>
<td>Interaction</td>
<td>6</td>
<td>149.7</td>
<td>149.8</td>
<td>24.96</td>
<td>0.51</td>
<td>0.790</td>
</tr>
<tr>
<td>Residual Error</td>
<td>16</td>
<td>779.1</td>
<td>779.1</td>
<td>48.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lack-of-Fit</td>
<td>10</td>
<td>615.4</td>
<td>615.4</td>
<td>61.54</td>
<td>2.26</td>
<td>0.166</td>
</tr>
<tr>
<td>Pure Error</td>
<td>6</td>
<td>163.7</td>
<td>163.7</td>
<td>27.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td>5646.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) Degree of freedom. b) Sequential sum of squares. c) Adjusted sum of squares. d) Adjusted mean of squares. e) F test. f) p value.

parameters such as temperature of column, injector and detector were adjusted. Then, hydrogenation product (1µL injected into the GC column. Aniline was the only product of the nitrobenzene hydrogenation that is detected by GC chromatography. The efficiency of aniline is obtained from the following formula:

\[
\text{Efficiency(\%)} = \frac{A_a}{A_t} \times 100
\]

(1)

Where ‘Aa’ is the area under the aniline peak, ‘At’ is the area under the aniline and nitrobenzene peaks in the mixture of the reactor. The determined efficiencies by CG chromatography are shown in table 2.

Analysis of variance (ANOVA) and estimated regression coefficient for the response Y

A series of experiments were carried out by considering a central composite design (Table 2). Various statistical data (standard error of estimate, sum of squares of the errors, F statistics and p value) were also calculated. The collected statistical data in Table 3 indicate that the model containing linear, squared and interaction terms is significant at 95% confidence level (p=0 and F= 7.14). This means that the model is reliable and can be used in the prediction purposes. Moreover, among different sources of variation in the model, the linear part is significant at 90% confidence level (p< 0.1). The coefficients of the nonlinear polynomial model and p values are shown in Table 4, where the standard error of coefficient is a measure of the variation in estimating the coefficient and "t" is the ratio of the coefficient to the standard error. At 95% confidence level, only pressure and constant terms are significant (p< 0.05). The sign of the pressure term indicates that in higher hydrogen pressures, the efficiency of the hydrogenation will be higher. Moreover, the coefficients of the squared and interaction terms were relatively small.

Model validation

Experimental results, predicted values, and the coefficients in Table 4, were used to calculate the residuals. Fig. 5 shows the normal probability of the residuals distribution. The correlation between the observed and predicted values of efficiency in hydrogenation is relatively acceptable (with coefficient of determination equal to 86.2%).

Response surface plots

In order to gain an insight about the effect of each variable, three dimensional (3D) plots for the predicted responses were also obtained. These curves have been plotted based on the polynomial function model with the use of the coefficients in Table 4 to illustrate changes in the response surface (Fig. 6). In these curves, there is a significant relationship between variables and response (efficiency %) at the center level of other variables. For example, Fig. 6a shows the effect of Ru loading (L) and reaction time (Time) on the efficiency of the hydrogenation of the NB (E (%)) at the center level of reaction temperature (T) and hydrogen pressure (P). The effect of reaction temperature (T) and Ru loading (L) on efficiency (E (%)), while keeping reaction time (Time) and hydrogen pressure (P) at center level, was shown in Fig. 6b.
Table 4: Estimated Regression Coefficients for Efficiency (%).

<table>
<thead>
<tr>
<th>Term</th>
<th>'Coef'</th>
<th>'t'</th>
<th>'p'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>35.718</td>
<td>3.852</td>
<td>0.001</td>
</tr>
<tr>
<td>Pressure</td>
<td>1.5537</td>
<td>2.205</td>
<td>0.042</td>
</tr>
<tr>
<td>Temperature</td>
<td>-0.2498</td>
<td>-1.222</td>
<td>0.239</td>
</tr>
<tr>
<td>Time</td>
<td>0.2214</td>
<td>1.300</td>
<td>0.212</td>
</tr>
<tr>
<td>Loading</td>
<td>1.0284</td>
<td>0.668</td>
<td>0.514</td>
</tr>
<tr>
<td>Pressure*Pressure</td>
<td>-0.0341</td>
<td>-1.655</td>
<td>0.117</td>
</tr>
<tr>
<td>Temperature*Temperature</td>
<td>0.0015</td>
<td>1.346</td>
<td>0.197</td>
</tr>
<tr>
<td>Time*Time</td>
<td>-0.0007</td>
<td>-0.847</td>
<td>0.409</td>
</tr>
<tr>
<td>Loading*Loading</td>
<td>0.0475</td>
<td>0.538</td>
<td>0.598</td>
</tr>
<tr>
<td>Pressure*Temperature</td>
<td>0.0017</td>
<td>0.860</td>
<td>0.403</td>
</tr>
<tr>
<td>Pressure*Time</td>
<td>0.0008</td>
<td>0.502</td>
<td>0.623</td>
</tr>
<tr>
<td>Pressure*Loading</td>
<td>-0.0160</td>
<td>-0.931</td>
<td>0.365</td>
</tr>
<tr>
<td>Temperature*Time</td>
<td>0.0001</td>
<td>0.287</td>
<td>0.778</td>
</tr>
<tr>
<td>Temperature*Loading</td>
<td>0.0029</td>
<td>0.717</td>
<td>0.484</td>
</tr>
<tr>
<td>Time*Loading</td>
<td>-0.0026</td>
<td>-0.788</td>
<td>0.442</td>
</tr>
</tbody>
</table>

a) Coefficient. b) Standard error of the coefficient. c) 't' test. d) 'p' value

Fig. 5: Residual plots for Y (efficiency (%)) in the model.
Table 5: Optimum values of variables obtained from regression equations for the hydrogenation of nitrobenzene to aniline

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Pressure (atm)</th>
<th>Temperature (ºC)</th>
<th>Time (min)</th>
<th>Loading (%)</th>
<th>Hydrogenation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimum value</td>
<td>22.33</td>
<td>150.00</td>
<td>180.00</td>
<td>15.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Fig. 6: The three-dimensional (3D) plots of efficiency of hydrogenation of NB.

Surface plots of the efficiency (%) versus pressure and loading, pressure and time, temperature and time, and pressure and temperature were also shown in Figs. 6c, 6d, 6e and 6f, respectively. As shown in Figs. 6a, b, c, d, e, f, there is a nonlinear relationship between E (%) and P, T, Time and L variables, since there are a few curves were observed at the surface plots of E (%). Response optimization results of the nonlinear polynomial model are shown in Table 5. The optimal values of the variables are also reported in Table 5 and can be simply observed in the different panels in Fig. 6.

Multiple regression analysis of the experimental data was obtained from the following regression equation for the hydrogenation of benzene: in which Y is the response variable or hydrogenation efficiency of benzene P, T, t and W are the coded values of the independent variables, pressure, temperature, reaction time and metal loading percentage, respectively.

\[Y = 35.718 + 1.5537P - 0.2498T + 0.2214t + 1.0284W - 0.0341P^2 + 0.0015T^2 - 0.0007t^2 - 0.0475W^2 + 0.0017PT + 0.0008Pt - 0.0160PW + 0.0001Tt + 0.0029TW - 0.0026tW \]

The multiple regression coefficient (R²) was estimated from the second-degree polynomial Eq. (2). The value of \(R^2 = 0.924 \), which is close to one, indicates that the correlation is suitable for predicting the performance of the hydrogenation system and the predicted values were close to the experimental results.

Metals have different physical and chemical properties. So they have different catalytic activities. Since ruthenium catalysts were shown to be highly active and selective for the hydrogenation of aromatic amines [43]. Usefulness of ruthenium as hydrogenation catalysts has been recognized by many other investigators in various hydrogenations [44, 45].
However, what is clearly seen in this study is that the use of fullerene as a base in the preparation of catalysts increased the efficiency of hydrogenation. It will definitely increase the active surface of the catalyst.

CONCLUSIONS
In this study ruthenium nanocatalyst supported fullerenes (C₆₀), used for the catalytic hydrogenation of NB to AN, was investigated. This catalyst was characterized by different instrumental techniques and the activity of the hydrogenation of NB to AN in a batch reactor was also tested. Subsequent to this step, response surface methodology (RSM) was used to study the cumulative effect of various parameters including, pressure, temperature, time and loading. In order to maximize the hydrogenation of NB to AN these latter parameters were optimized. Furthermore, catalytic activity was evaluated over a temperature range of 25–150°C, hydrogen pressure of 1-30 atm, ruthenium content of 1-15%(w/w) and reaction time of 30-180 min in a bench scale reactor. The optimized model predicted that the hydrogenation should be at a maximum level (approximately 100%) with the following conditions; Ru loading of 15%, reaction temperature of 150 °C, reaction time of 180 min and hydrogen pressure of 22.33 atm.

Acknowledgments
We are grateful to the Department of Chemistry of Bu-Ali Sina University and Center for Research and Development of Petroleum Technologies at Kermanshah, Research Institute of Petroleum Industry (RIPI), Kermanshah, Iran, for financial support.

Received : Jul. 17, 2013 ; Accepted : Oct. 27, 2014

REFERENCES

