Application of Response Surface Methodology for Catalytic Hydrogenation of Nitrobenzene to Aniline Using Ruthenium Supported Fullerene Nanocatalyst

Document Type: Research Article


1 Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 65175 Hamedan, I.R. IRAN

2 Center for Research and Development of Petroleum Technologies at Kermanshah, Research Institute of Petroleum Industry (RIPI), Kermanshah, I.R. IRAN

3 Research Institute of Petroleum Industry (RIPI), P.O. Box 14665 Tehran, I.R. IRAN

4 Faculty of Chemistry, Razi University, P.O. Box 6714 Kermanshah, I.R. IRAN


In this study fullerene functionalized using oleum (H2SO4·SO3), followed by the hydrolysis of the intermediate cyclosulfated fullerene as well as  an oxidizing agent was employed to functionalize the fullerenes. Ruthenium was then added by the impregnation method or deposited on the functionalized fullerene. Subsequent to this step, Response Surface Methodology (RSM) was used to study the cumulative effect of various parameters including, pressure, temperature, time and loading. In order to maximize the hydrogenation of nitrobenzene (NB) to aniline (AN) these latter parameters were optimized. Furthermore, catalytic activity was evaluated over a temperature range of 25–150°C, hydrogen pressure of 1-30 atm, ruthenium content of 1-15%(w/w) and reaction time of 30-180 min in a bench scale reactor. The optimized model predicted that the hydrogenation should be at a maximum level (approximately 100%) with the following conditions; Ru loading of 15%, reaction temperature of 150 °C, reaction time of 180 min and hydrogen pressure of 22.33 atm.


Main Subjects

[1] Rode C.V., Vaidya M.J., Jaganathan R., Chaudhari R.V., Hydrogenation of Nitrobenzene to p-Aminophenol in a Four-Phase Reactor: Reaction Kinetics and Mass Transfer Effects, Chem. Eng. Sci, 56:1299-1304 (2001).
[2] Lee L.T., Chen M.H., Yao C.N., Process for Manufacturing p-Aminophenol, US patent 4, 885,389 (1998).
[3] Chaudari R.V., Divekar S.S., Vaidya M.J., Rode C.V., Single Step Process for the Preparation of
, US patent 6,028,227 (2000).
[5] Torres C., Jablonski C., Baronetti E.L., Castro G.T., de Miguel S.R., Scelza O. A., et al., Effect of the Carbon Pre-treatment on the Properties and Performance for Nitrobenzene Hydrogenation of Pt/C Catalysts, J. Appl. Catal. Gen., 161: 213-226 (1997).
[7] Lonza. First Chemical Co, Hydrocarbon Process, 59:136-143 (1979).
[12]  Gonzalez R.A., Hydrogenation F Aromatic Nitro Compounds,US Patent 3,499,034 (1966).
[13] Cossaboon K.F., Hydrogenation of Mixed Aromatic Nitrobodies, US Patent 4,185, 036 (1977).
[14] Li C.H,, Yu Z.X., Yao K.F., Ji S.F., Liang J., Nitrobenzene Hydrogenation with Carbon Nanotube-Supported Platinum Catalyst Under Mild Conditions, Journal of Molecular Catalysis A. Chemical ., 226: 101-105 (2005).
[15] Markus D., Gehlen V., Wershofen F. U., Andre L., Peter L., Benie W.M., Process for Preparing Aniline, US 7692042 (2010).
[16] Panagiotou G.D., Tzirakis M.D., Vakros J., Loukatzikou L., Orfanopoulos M., Kordulis C., et al., Development of [60] Fullerene Supported on Silica Catalysts for the Photo-Oxidation of Alkenes, Appl.Catal.A., 372:16-25  (2010).
[18] Tzirakis M.D., Vakrosb J., Loukatzikouc L., Amargianitakisa V., Orfanopoulosa M., Kordulisb C., Lycourghiotis A., γ-Alumina-Supported [60]Fullerene Catalysts: Synthesis, Properties and Applications in the Photooxidation of Alkenes, J.Mol.Catal. A., 316: 65-74 (2010).
[19] Sulman E., Matveeva V., Semagina N., Yanov I., Bashilov V., Sokolov V., Catalytic Hydrogenation of Acetylenic Alcohols Using palladium Complex of Fullerene C60,  J. Molecular Catal A: Chemical., 146: 257-263 (1999).
[20] Coqa B., Planeixb J.M., Brotons V.A., Fullerene-Based Materials as New Support Media in Heterogeneous Catalysis by Metals, Appl. Catal. A., 173: 175-183 (1998).
[21] Spassova I., Khristova M., Nickolov R., Mehandjiev D., Novel Application of Depleted Fullerene Soot (DFS) as Support of Catalysts for Low-Temperature Reduction of NO with CO, J. Colloid Interface Sci., 320: 186-193 (2008).
[22] Bai Z., Shi M., Niu L., Li Z., Jiang L., Yang L., Facile Preparation f  Pt-Ru Nanoparticles Supported on Polyaniline Modified Fullerene [60] for Methanol Oxidation, Journal Supported on Nanoparticle Research, 15: 11-17 (2013).
[23] Wei G., Wang L. H., Lin Y. J., Yi J., Chen H.B., Liao D. W., Novel Ruthenium Catalyst (K-Ru/C60/ 70) for Ammonia Synthesis, Chinese Chemical Letters, 10: 433-438 (1999).
[24] Manjon F., Santana M. M., Garcia F. D., Orellana, Guillremo Are Silicone- Supported [C60]- Fullerenes an Alternative to Ru(ii) Polypyridyls for Photodynamic Solar Water Disinfection, Photochemical and Photobiological Sciences, 13, 397-406 (2014).
[25] Pol S.V., Pol V.G., Frydman A., Churilov G.N., Gedanken A., Fabrication and Magnetic Properties of Ni Nanospheres Encapsulated in a Ffullerene-like Carbon, J. Phys. Chem. B., 109: 9495-9498(2005).
[26] Rylander P.N., "Catalytic Hydrogenation in Organic Synthesis", Academic Press, New York, London (1979).
[27] Trépanier M , Tavasoli. A., Anahid. Sanaz., Dalai. A, Deactivation Behavior of Carbon Nanotubes Supported Cobalt Catalysts in Fischer-Tropsch Synthesis, Iran. J. Chem. Chem. Eng. (IJCCE), 30:37-47 (2011).
[28] Tavasoli A., Irani M., Nakhaeipour A., Mortazavi Y., Khodadadi A. A., Ajay K. D., Preparation of a Novel Super Active Fischer-Tropsch Cobalt Catalyst Supported on Carbon NanotubesIran. J. Chem. Chem. Eng. (IJCCE), 28: 37-48 (2009).
[29] Fischer J.E., Heiney P.A., Smith A.B., Solid State Chemistry of Fullerene-Based Materials, Acc. Chem. Res., 25: 112-118 (1992).
[30] Montgomery D.C., "Design and Analysis of Experiments", John Wiley Publishing Co. (1991).
[31] Cestari A.R., Vieira E.F.S., Nascimento A.J.P., Santos Filha M.M., Airoldi C., Factorial Design Evaluation of Some Experimental Factors for Phenols Oxidation using Crude Extracts from Jackfruit (Artocarpus integrifolia), J. Braz. Chem. Soc, , 13: 260-265 (2002).
[33] Chiang L.Y., Wang L.Y., Swirczewski J. W., Soled, S., Cameron, S., Efficient Synthesis of Polyhydroxylated Fullerene Derivatives via Hydrolysis of Polycyclosulfated Precursors., J. Org. Chem. 59: 3960-3968 (1994).
[34] boul- Gheit A.K. A., The Role of Additives in the Impregnation of Platinum and Ruthenium on Alumina Catalysts, J. Chem. Tech. Biotechnol. 29: 480-486 (1979).
[35] Aboul- Gheit  A.K., "Aromatic Hydrogenation on Supported Bimetallic Combination", Inst. Francais du Petrole. Rep. No., 20874 (1973). 
[36] Saxby J.D., Chatfield S.P., Thermogravimetric analysis of Buckminsterfullernce and Related Materials in Air, J. Phys. Chem., 96:17-18 (1992).
[37] "JCPDS Powder Diffraction File", International Centre for Diffraction Data, Swarthmore.
[38] Nath, S., Chakdar, D., Gope G. Synthesis of CdS and ZnS Quantum Dots and Their Applications in Electronics, Nanotrends., A Journal of Nanotechnology and its Application., 2:1-3 (2007).
[39] Nath S., Chakdar, D.,  Avasthi D., Novel Effect of 100 MeV Ni+ 7 Ion Beam on ZnS Quantum dots Prepared by Chemical Methods, Journal of Nanoelectronics and Optoelectronics., 3:1-4 (2006).
[40] Das R., Nath S.S., Chakdar D., Gope G., Bhattacharjee R., Preparation of Silver Nanoparticles and Their Characterization Printable Document, Journal of Nanotechnology Online., 8:4-6 (2008).
[41] Hall B.D., Zanchet D., Ugarte D., Estimating Nanoparticle Size from Diffraction Measurements, Journal of Applied Crystallography, 33: 1335-1341 (2000).
[42] Pavia, D. L., Lampman G. M., Kriz G.S., Vyvyan J.R., "Introduction to Spectroscopy", 4: 76-91 (2009).
[43] Behr L.C., Kirby J.E., MacDonald R.N., Todd C.W., Synthesis of Alicyclic Diamines, J. Am. Chem. Soc., 68, 1296-1297 (1946).
[45] Nishimura S., Itaya T., Shiota M., Reactions of Cycloalkanones in the Presence of Platinum-Metal Catalysts and Hydrogen, Chem. Commun. (London), 422-423 (1967).