Characterization and Photocatalytic Activity of ZnO, ZnS, ZnO/ZnS, CdO, CdS and CdO/CdS Nanoparticles in Mesoporous SBA-15

Document Type: Research Article


1 Faculty of Applied Chemistry, Malek-ashtar University of Technology, Shahin Shahr, I.R. IRAN

2 Department of Chemistry, Islamic Azad University, Shahreza Branch, Shahreza, I.R. IRAN


Grinding (solvent-free) method was used as a superior technique to prepare mesoporous photocatalysts of ZnO, ZnS, ZnO / ZnS, CdO, CdS and CdO / CdS-SBA-15. In this technique, the nitrate, acetate and chloride salts of zinc and/or cadmium were grinded with as-synthesized SBA-15 as a mesoporous material. The controllable sulfurationis was used to prepare ZnS, ZnO/ZnS, CdS and CdO/CdS-SBA-15 at temperature of 80 °C. The advantages of grinding technique were: i) the elimination of solvent and thus decrease of expense and ii) the complete incorporation of metal salts in the nanochannel of mesoporous material in a short time. X-ray powder diffraction, N2 adsorption-desorption and FT-IR spectroscopy were used to characterize the prepared materials. The highly dispersed semiconductors in SBA-15 demonstrate an active photodegradation of Congo red in aqueous solution. The nanocomposites of ZnO/ZnS and CdO/CdS in channels of SBA-15 showed the highest photocatalytic activity. The photocatalytic activity of ZnO-, ZnS- and ZnO/ZnS-SBA-15 were also dependent on the salt precursor of zinc. The prepared composite photocatalysts of zinc/SBA-15, by using ZnCl2 as salt precursor, indicated the higher activity.


Main Subjects

[1] Kresge C.T., Leonowicz M.E., Roth W.J., Vartuli J.C., Beck J.S., Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism, Nature 359: 710-712 (1992).

[2] Zhang W.H., Shi J.L., Chen H.R., Hua Z.L., Yan D.S., Synthesis and Characterization of Nanosized ZnS Confined in Ordered Mesoporous Ssilica, Chem. Mater. 13: 648-654 (2001).

[3] Zhao D., Feng J., Huo Q., Melosh N., Fredrickson G.H., Chmelka B.F., Stucky G.D., Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores, Science, 279: 548-552 (1998).

[4] Ziarani G.M., Mousavi S., Lashgari N., Badiei A., Shakiba M., Application of Sulfonic Acid Functionalized Nanoporous Silica (SBA-Pr-SO3H) in the Green One-Ppot Synthesis of Polyhydroacridine Libraries, Iran. J. Chem. Chem. Eng. (IJCCE), 32: 9-16 (2013). 

[5] Zhao D., Huo Q., Feng J., Chmelka B.F., Stucky G.D., Stucky, Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Sructures, J. Am. Chem. Soc. 120: 6024-6036 (1998).

[6] Segura Y., Cool P., Van Der Voort P., Mees F., Meynen V., Vansant E.F., TiOx-VOx Mixed Oxides on SBA-15 Support Prepared by the Designed Dispersion of Acetylacetonate Complexes: Spectroscopic Study of the Reaction Mechanisms, J. Phys. Chem. B, 108: 3794-3800(2004).

[7] Busuioc, A.M., Meynen, V., Beyers, E., Mertens, M., Cool, P., Bilba, N., Vansant, E.F., Structural Features and Photocatalytic Behaviour of Titania Deposited within the Pores of SBA-15, Appl. Catal. A 312: 153-164 (2006).

[8] Perathoner, S., Lanzafame, P., Passalacqua, R., Centi, G., Schlogl, R., Su, D.S., Use of Mesoporous SBA-15 for Nanostructuringtitania for Photocatalytic applications, Micropor. Mesopor. Mater. 90: 347-361 (2006).

[9] Ciesla, U., Schuth, F., Ordered Mesoporous Materials, Micropor. Mesopor. Mater. 27: 131-149 (1999).

[10] Lopez-Munoz M.J., van Grieken R., Aguado J., Marugan, J., Role of the Support on the Activity of Silica-Supported TiO2 Photocatalysts: Structure of the TiO2/SBA-15 Photocatalysts, Catal. Today, 101: 307-314 (2005).

[11] Peng X., Schlamp M.C., Kadavanchi A.V., Alivisatos A.P., Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility, J. Am. Chem. Soc. 119: 7019-7029(1997).

[12] Dabbousi B.O., Jensen K.F., Bawendi M.G., (CdSe) ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites, J. Phys. Chem. B 101: 9463- 9475(1998).

[13] Janitabar D.S., Mahjoub A.R., Nilchi A., Synthesis of Spongelike Mesoporous Anatase and Its Photocatalytic Properties, Iran. J. Chem. Chem. Eng. (IJCCE),  29: 37-42 (2010). 

[15] Modirshahla N., Behnajady M.A., Jangi Oskui M.R., Investigation of the Eefficiency of ZnO Photocatalyst in the Removal of p-Nitrophenol from Contaminated Water, Iran. J. Chem. Chem. Eng. (IJCCE), 28: 49-55 (2009).

[16] Vayssieres L., Kies K., Lindquist S.E., Hagfeldt A., Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO, J. Phys. Chem. B 105: 3350-3352 (2001).

[17] Nayak J., Sahu S.N., Kasuya J., Nozaki S., CdS-ZnO Composite Nanorods: Synthesis, Characterization and Application for Photocatalytic Degradation of 3,4-dDihydroxy Benzoic Acid, Appl. Sur. Sci. 254: 7215-7218 (2008).

[18] Yang H.C., Lin C.Y., Chien Y.S., Wu J.C.S., Wu H.H., Mesoporous TiO2/SBA-15, and Cu/TiO2/SBA-15 Composite Photocatalysts for Photoreduction of CO2 to MethanolCatal. Lett. 131: 381-387 (2009).

[19] Xia F., Ou E., Wang L., WangJ., Photocatalytic Degradation of Dyes Over Cobalt Doped Mesoporous SBA-15 Under Sunlight, Dyes Pigments 76:. 76-81 (2008).

[21] Jiang Q., Wu Z.Y., Wang Y.M., Cao Y., Zhou C.F., Zhu J.H., Fabrication of Photoluminescent ZnO/SBA-15 Through Directly Dspersing Zinc Nitrate Into the As-Pprepared Mesoporous Silica Occluded with Template, J. Mater. Chem., 16: 1536- 1542(2006).

[22] Gu F.N., Yue M.B., Wu Z.Y., Sun L.B., Wang Y., Zhu J.H., Enhanced Blue Emission from ZnS–ZnO Composites Confined in SBA-15,  J. Luminescence 128: 1148-1154 (2008).

[24] Pouretedal H.R., Narimany S., Keshavarz M.H., Nanoparticles of ZnS Doped with Iron as Photocatalyst Under UV and Sunlight Irradiation, Int. J. Mat. Res., 101: 1046-1051 (2010).

[25] Zu S., Wang Z., Liu B., Fan X., Qian G., Synthesis of Nano-CdxZn1xS by Precipitate-Hydrothermal Method and Its Photocatalytic Activities, J. Alloys Comp., 476: 689-692 (2009).

[26] Pouretedal H.R., Eskandari H., Keshavarz M.H., Semnani A., Photodegradation of Organic Dyes Uing Nanoparticles of Cadmium Sulfide Doped with Manganese, Nckel and Copper as NanophotocatalystActa Chim. Slov., 56: 353- 361(2009).

[27] Gregg S.J., Sing K.S.W., "Adsorption, Surface Area and Porosity", 2nd ed., Academic Press, London, 1982.

[28] Brunauer S., Emmett P.H., Teller E., Adsorption of Gases in Multimolecular Layers, J. Am. Chem. Soc., 60: 309-319 (1938).

[29] Kruk, M., Antchshuk, V., Jaroniec, M., Sayari, A., New Approach to Evaluate Pore Size Distributions and Surface Areas for Hydrophobic Mesoporous Solids, J. Phys. Chem. B 103, p. 10670-10678 (1999).

[31] Jang J., Yu C.J., Choi S.H., Ji S.M., Kim E.S., Lee J.S., Topotactic Synthesis of Mesoporous ZnS and ZnO Nanoplates and Their Photocatalytic Activity, J. Catal., 254: 144-155 (2008).

[32] Pouretedal H.R., Keshavarz M.H., Yosefi M.H., Shokrollahi A., Zali A., Photodegradation of HMX and RDX in the Presence of Nanocatalyst of Znc Slfide Doped with Copper, Iran. J. Chem. Chem. Eng. (IJCCE), 28: 13-19(2009).