Synthesis of Nanoporous Metal Organic Framework MIL-53-Cu and Its Application for Gas Separation

Document Type: Research Note

Authors

Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, P.O. Box 16846-13114 Tehran, I.R. IRAN

Abstract

MIL-53-Cu has been synthesized hydrothermally and has been used for the first time for gas separation. MIL-53-Cu shows adsorption capacities of 8.1, 0.7 and 0.5 m.mol/g, respectively, for CH4, CO2 and H2 at 30 bar and 298 K. The high CH4 adsorption capacity of MIL-53-Cu maybe attributed to the high pore volume and large number of open metal sites. The high selectivity for CH4 over CO2 (11.5) and H2 (16.2), suggests that MIL-53-Cu is a effective adsorbent material for the separation of CH4 from gas mixtures.

Keywords

Main Subjects


[1] Celzard A., Fierro V., Preparing a Suitable Material Designed for Methane Storage:  A Comprehensive Report, Energy. Fuel., 19: 573-583 (2005).

[2] Wu H., Simmons J.M., Liu Y., Brown C.M., Wang X., Ma S., Peterson V.K., Southon P.D., Kepert C.J., Zhou H., Yildirim T., Zhou W., Metal-Organic Frameworks with Exceptionally High Methane Uptake: Where are how is Methane Stored?, Chem. Eur. J., 16: 5205-5213 (2010).

[3] Lozano-Castello D., Alcaniz-Monge J., de la Casa-Lillo M.A., Cazorla-Amoros D., Linares-Solano A., Advances in the Study of Methane Storage in Porous Carbonaceous Materials, Fuel., 81: 1777-1803 (2002).

[4] Menon V.C., Komarneni S.J., Porous Adsorbents for Vehicular Natural Gas Storage: A Review, J. Porous Mater., 5: 43-58 (1998).

[6] Chung K.H., Park B.G., Esterification of Oleic Acid in Soybean Oil on Zeolite Catalysts with Different Acidity, J. Ind. Eng. Chem., 15: 388- 392 (2009).

[7] Leaf D., Verolmec H.J. H., Hunt W.F., Overview of Regulatory/Policy/Economic Issues Related to Carbon Dioxide, J. Environ. Int., 29: 303-310 (2003).

[8] Wood C.D., Tan B., Trewin A., Niu H.J., Bradshaw D., Rosseinsky M.J., Khimyak Y.Z., Campbell N.L., Kirk R., Stockel E., Cooper A.I., Hydrogen Storage in Microporous Hypercrosslinked Organic Polymer Networks, Chem. Mater., 19: 2034-2048 (2007).

[9] Ghanem B.S., Msayib K.J., McKeown N.B., Harris K.D.M., Pan Z., Budd P.M., Butler A., Selbie J., Book D., Walton A., A Triptycene-Based Polymer of Intrinsic Microposity That Displays Enhanced Surface Area and Hydrogen Adsorption, Chem. Commun., 67-69 (2007).

[10] Hirscher M., Panella B., Hydrogen Storage in Metalorganic Trameworks, Scr. Mater., 56: 809-812 (2007).

[11] Anbia M., Hoseini V., Enhancement of CO2 Adsorption on Nanoporous Chromium Terephthalate (MIL-101) by Amine Modification, J. Nat. Gas. Chem., 21: 339-343 (2012).

[12] Anbia M., Hoseini V., Sheykhi S., Sorption of Methane, Hydrogen and Carbon Dioxide on Metal-Organic Framework, Iron Terephthalate (MOF-235), J. Ind. Eng. Chem., 18: 1149-1152 (2012).

[13] Anbia M., Moradi S.E., Removal of Naphthalene from Petrochemical Wastewater Streams Using Carbon Nanoporous Adsorbent, Appl. Surf. Sci., 255: 5041-5047 (2009).

[15] Anbia M., Hoseini V., Mandegarzad S., Synthesis and Characterization of Nanocomposite MCM-48-PEHA-DEA and Its Application as CO2Adsorbent, Korean. J. Chem. Eng., 29: 1776-1781 (2012).

[16] Alaei M., Jalali M., Rashidi A., Simple and Economical Method for the Preparation of MgO Nanostructures with Suitable Surface Area, Iran. J. Chem. Chem. Eng. (IJCCE), 33: 21-28 (2014).

[17] Faghihian Hossein., Rasekh M., Removal of Chromate from Aqueous Solution by a Novel Clinoptilolite-Polyanillin Composite, Iran. J. Chem. Chem. Eng. (IJCCE), 33: 45-52 (2014).

[18] Yazdizadeh M., Nourbakhsh H., Jafari Nasr M.R., A Solution Model for Predicting Asphaltene Precipitation, Iran. J. Chem. Chem. Eng. (IJCCE), 69: 93-98 (2014).

[19] Shahi M., Foroughifar N., Moradi Sh., Synthesis and Ab Initio Study of Pyrano[2,3-d]pyrimidine Derivatives, Iran. J. Chem. Chem. Eng. (IJCCE), 33: 1-14 (2014).

[20] Kondo M., Yoshito mi T., Seki K., Matsuzaka H., Kitagava S., Three-Dimensional Framework with Channeling Cavities for Small Molecules: {[M2(4, 4′-bpy)3(NO3)4xH2O}n (M = Co, Ni, Zn), Angew. Chem. Int. Ed., 36: 1725-1727 (1997).

[21] Chowdhury P., Bikkina C., Gumma S., Gas Adsorption Properties of the Chromium-Based Metal Organic Framework MIL-101, J. Phys. Chem. C., 113: 6616-6621 (2009).

[22] Bao Z., Yu L., Ren Q., Lu X., Deng S., Adsorption of CO2 and CH4 on a Magnesium-Based Metal Organic Framework, J. Colloid. Interface. Sci., 353: 549-556 (2011).

[23] Anbia M., Sheykhi S., Synthesis of Nanoporous Copper Terephthalate [MIL-53(Cu)] as a Novel Methane-Storage Adsorbent, J. Nat. Gas. Chem., 21: 680-684 (2012).