Synthesis of Lithium Ion Sieve Nanoparticles and Optimizing Uptake Capacity by Taguchi Method

Document Type: Research Article

Authors

1 Department of Mining Engineering, Shahid Bahonar University of Kerman, P.O. Box 76169-133 Kerman, I.R. IRAN

2 Department of Materials Engineering, Shahid Bahonar University of Kerman, P.O.Box 76169-133 Kerman, I.R. IRAN

Abstract

Spinel-type of MnO2 nanoparticles which successfully synthesized by a hydrothermal process, have a required capacity for lithium uptake from liquid resources. Themost lithium adsorption capacity of 6.6 mmol/g of up to now was found to be an important limiting parameter for industrial applications. Therefore, increasing uptake capacity of these ion sieves by studding the effect of six effective parameters, involving lithium compounds, manganese compounds, oxidizing reagents, calcination temperatures, heating times and Li/Mn mol ratios was investigated. To this end, Taguchi L9(34) orthogonal array was employedas a predominate method to evaluate these parameters and the results optimized by using analysis of variance (ANOVA) and analysis of mean (ANOM) in two separate stages. Although, all mentioned parameters had significant effect on lithium uptake capacity, but oxidizing reagents were the most effective factors. Hence, a new ion sieve with lithium adsorption capacity more than 9 mmol/g was synthesized for the first time, by applying this method.

Keywords

Main Subjects


[1] Chitrakar R., Kanoh H., Makita Y., Miyai Y., Ooi K., Synthesis of Spinel-Type Lithium Antimony Manganese Oxides and Their Li Extraction/Ion Insertion ReactionsJ Mater Chem., 10 (10): 2325-2329 (2000).

[2] Feng Q., Kanoh H., Miyai Y., Ooi  K., Hydrothermal Synthesis of Lithium and Sodium Manganese Oxides and Their Metal Ion Extraction/Insertion Reactions, Chem Mater., 7: 1226-1232 (1995).

[3] Hunter J.C., Preparation of a New Crystal form of Manganese Dioxide: λ-MnO2, J. Solid State Chem., 39: 142-7 (1981).

[4] Ooi K., Miyai Y., Katoh S., Recovery of Lithium from Seawater by Manganese Oxide Adsorbent, Sep Sci Technol., 21: 755-766 (1986).

[5] Shen X.M., Clearfield A., Phase Transitions and Ion Exchange Behavior of Electrolytically Prepared Manganese Dioxide, J Solid State Chem., 64(3):270-282 (1986).

[6] Zhang Q.H., Sun S., Li S., Jiang H., Yu J.G., Adsorption of Lithium Ions on Novel Nanocrystal MnO2, Chem Eng Sci., 62(18–20): 4869-4872 (2007).

[7] Zhang Q.H., Li Sh., Sun S.Y., Yin X.S., Yu J.G., LiMn2O4 Spinel Direct Synthesis and Lithium ion Selective Adsorption, Chem Eng Sci., 65(1): 169-173 (2010).

[8] Miyai Y., Ooi K., Katoh S., Recovery of Lithium from Seawater Using a New Type of Ion-Sieve Adsorbent Based on MgMn2O4, Sep. Sci. Technol., 23(1-3): 179-191 (1988).

[9] Khamizov R. Kh., Mironova L.I., Tikhonov N.A., Bychkov A.V., Poezd, A.D. Recovery of Pure Magnesium Compounds from Seawater by the Use of the Effect of Isothermal Supersaturating in the Ion-Exchange Process, Separation Science and Technology, 31: 1-20 (1996).

[10] Eftekhari A., Bayandori Moghaddam A., Yazdani B., Moztarzadeh F., Effects of Metal Source in Metal substitution of Lithium Manganese Oxide Spinel,  Electrochimica Acta., 52: 1491-6 (2006).

[11] Eftekhari A., Bayandori Moghaddam A., Solati-Hashjin M., Electrochemical Properties of LiMn2O4 Cathode Material Doped with an Actinide, Journal of Alloys and Compounds,, 424: 225-230 (2006).

[12] Kaneko S., Takahashi W., Adsorption of Lithium in Sea water on Aalumina Magnesia Mixed-Oxide Gels, Colloids and Surfaces, 47: 69-79 (1990).

[13] Chitrakar R., Kanoh H., Miyai Y., Ooi K., A New Type of Manganese Oxide (MnO2·0.5H2O) Derived from Li1.6Mn1.6O4 and Its Lithium Ion-Sieve Properties, Chemistry of  Materials,  12(10): 3151-7 (2000).

[14] Chitrakar R., Kanoh H., Miyai Y., Ooi K., Recovery of Lithium from Seawater Using Manganese Oxide Adsorbent (H1.6Mn1.6O4) Derived from Li1.6Mn1.6O4, Industrial & Engineering Chemistry Research, 40(9): 2054-8 (2001).

[15] Lei J.h., Chen Y.x., Gong Q.x., Sun Y.b., Zhao J., Yuan Q-h., Preparation of λ-MnO2 by Column Method and its Ion-sieve Property, Journal of Wuhan University of Technology-Mater. Sci. Ed., 17(4): 9-12 (2002).

[16] Wang L., Ma W., Liu R., Li H.Y., Meng C.G., Correlation Between Li+ Adsorption Capacity and the Preparation Conditions of Spinel Lithium Manganese Precursor, Solid State Ionics., 177(17–18): 1421-1428 (2006).

[17] Zhang Q.H., Li Sh., Sun S.Y., Yin X.S., Yu J.G., Lithium Selective Adsorption on 1-D MnO2 Nanostructure Ion-Sieve, Advanced Powder Technology,  20(5): 432-437 (2009). 

[18] Wang L., Meng C., Ma W., Preparation of Lithium Ion-Sieve and Utilizing in Recovery of Lithium from Seawater, Frontiers of Chemical Engineering in China, 3(1): 65-67(2009).

[19] Tian L., Ma W., Han M., Adsorption Behavior of Li+ onto Nano-Lithium Ion Sieve from Hybrid Magnesium/Lithium Manganese Ooxide, Chemical Engineering Journal, 156(1): 134-140 (2010).

[20] Zhang Q.H., Li Sh., Sun S.Y., Yin X.S., Yu J.G., Lithium Selective Adsorption on Low-Dimensional Titania Nano Ribbons, Chemical Engineering Science, 65: 165-168 (2010).

[21] Özgür C., Preparation and characterization of LiMn2O4 Ion-Sieve with High Li+ Adsorption Rate by Ultrasonic Spray Pyrolysis, Solid State Ionics, 181(31–32): 1425142-8 (2010).

[22] Ma L.W., Chen B.Z., Shi X.C., Zhang W., Zhang K., Stability and Li+ Extraction/Adsorption Properties of LiMxMn2−xO4 (M=Ni, Al, Ti; 0 ≤ x ≤ 1) in Aqueous Solution, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 369(1–3): 88-94 (2010).

[23] Sun S.Y., Song X., Zhang Q.H., Wang J., Yu J.G., Lithium Extraction/Insertion Process on Cubic Li-Mn-O Precursors with Different Li/Mn Ratio and MorphologyAdsorption 17(5): 881-887 (2011).

[24] GargGagandeep T., RathGoutam, M.B., Development and Characterization of Nano-Fiber Patch for the Treatment  of Glaucoma, European Journal of Pharmaceutical Sciences, In Press (2013).

[25] Rouhi A.R., Fatehifar E., Application of New Application of New Inflection Point Method for Hydrodynamics Study in Slurry Bubble Column Reactors, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 32(2): 81-92 (2013).

[26] Roy R.K., "Design of Experiments Using The Design of Experiments Using The Taguchi Approach: 16 Steps to Product and Process Improvement, John Wiley & Sons, London 450-480 (2001).

[27] Khosravi-Darani K., Vasheghani-Farahani E., Application of the Taguchi Design for Production of Poly(β-Hydroxybutyrate) by Ralstonia Eutropha, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 23(1): 131-136 (2004).

[28] Pourjavadi A., Soleyman R., Novel High Capacity Swelling Superabsorbent Composite and Its Potential for Controlled Release of Fertilizers, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 29(4): 113-123 (2010).

[29] Liu W.L., Hsieh S.H., Chen W.J., Lee J.H., Study of Study of Nanosized Zinc Oxide on Cu–Zn Alloy Substrate Using Taguchi Method, Surface and Coatings Technology,, 201(22–23): 9238-9242 (2007).

[30] Chou C.S., Yang R.Y., Chen J.H., Chou S.W., The Optimum Conditions for Preparing the Lead-Free Piezoelectric Ceramic of Bi0.5Na0.5TiO3 Using the Taguchi Method, Powder Technology,  199(3): 264-271 (2010).

[31] Tofighy M., Ahmadzadeh S., Mohammadi T., Salty Water Desalination Using Carbon Nanotube Sheets, Desalination, 258(1): 182-186 (2010).

[32] Ma L.W., Chen B.Z., Shi X.C., Zhang W., Zhang K., Stability and Li+ Extraction/Adsorption Properties of LiMxMn2−xO4 (M= Ni, Al, Ti; 0≤x≤1) in Aqueous Solution, Colloids and Surfaces A: Physicochemical and Engineering Aspects,  369: 88-94 (2010).

[33] Norouzbeigi R., Edrissi M., Modification and Optimization of Nano-Crystalline Al2O3 Combustion Synthesis Using Taguchi L16 Array, Materials Research Bulletin, 46(10): 1615-1624 (2011).

[34] Benhaddad L., Makhloufi L., Messaoudi B., Rahmouni K., Takenouti H., Reactivity of Nanostructured MnO2 in Alkaline Medium Studied with a Microcavity Electrode: Effect of Oxidizing Agent, Journal of Materials Science & Technology,  27(7): 585-593 (2011).