Mononuclear and Dinuclear Copper(II) Complexes Containing N, O and S Donor Ligands: Synthesis, Characterization, Crystal Structure Determination and Antimicrobial Activity of [Cu(phen)(tda)].2H2O and [(phen)2Cu(µ-tda)Cu(phen)](ClO4)2.1.5H2O

Document Type : Research Article

Authors

1 Department of Chemistry, Shahid Beheshti University, P.O. Box 1983963113 Tehran, I.R. IRAN

2 Department of Microbiology, Faculty of Biological Sciences, Shahid Beheshti University, P.O. Box 1983963113 Tehran, I.R. IRAN

Abstract

Copper complexes of [Cu(phen)(tda)].2H2O(1) and [(phen)2Cu(µ-tda) Cu(phen)](ClO4)2.1.5H2O (2) (where phen is 1,10-phenanthroline and tda2- is thiodiacetate) have been synthesized. Both complexes were characterized by elemental analysis, IR, UV–Vis spectroscopy and cyclic voltammetry. Their solid state structures were determined by the single crystal X-Ray Diffraction method. Complex 1 is mononuclear and copper has accepted a five-coordinated square-based pyramidal structure with the tda2- anion facially coordinated to copper(II). Complex 2 has accepted an unsymmetrical square pyramidal coordination of two distinct copper complexes, one containing two phenanthroline and the other containing one phenanthroline and one tda2-, bridged by a carboxylate oxygen. The strong biological activity of these compounds against six reference bacterial included Bacillus subtilis (ATCC 465), Enterococcus faecalis (ATCC 29737), Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), Klebsiella pneumoniae (ATCC 10031), and Pseudomonas aeruginosa (ATCC 85327)  were investigated.  

Keywords

Main Subjects


[1] Rao C.N.R., Natarajan S., Vaidhyanathan R., Metal Carboxylates with Open Architectures, Angew. Chem. Int. Ed., 43: 1466-1496 (2004).
[2] Kitagawa S., Kitaura R., Noro S.I., Functional Porous Coordination Polymers, Angew. Chem. Int. Ed., 43: 2334-2375 (2004).
[3] Hagrman P.J., Hagrman D., Zubieta J., Organic-Inorganic Hybrid Materials: from “Simple” Coordination Polymers to Organodiamine-Templated Molybdenum Oxides, Angew. Chem. Int. Ed., 38: 2638-2684 (1999).
[4] Blake A.J., Champnees N.R., Hubberstey P., Li W.S., Withersby M.A., Schröder M., Inorganic Crystal Engineering Using Self-Assembly of Tailored Building-Blocks, Coord. Chem. Rev., 183: 117-138 (1999).
[5] Moulton B., Zaworotko M.J., From Molecules to Crystal Engineering: Supramolecular Isomerismand Polymorphismin Network Solids, Chem. Rev., 101: 1629-1658 (2001).
[7] Piroozmand M., Safari N., Samadi A.A., Catalyzed Oxidation of Cyclohexene and Cyclooctene with First Row Transition Metallophthalocyanines, Iran. J. Chem. Chem. Eng. (IJCCE), 25: 85-89 (2006).
[8] Mohajer, D., Tayebee, R. Influence of Nitrogen Bases on Epoxidation of Cyclooctene with Sodium Periodate Catalyzed by Manganese (III) Porphyrins, Iran. J. Chem Chem. Eng. (IJCCE), 18: 27-29 (1999).
[9] Thomas A.M., Nethaji M., Mahadevan S., Chakravarty A.R., Synthesis, Crystal Structure, and Nuclease Activity of Planar Mono-Heterocyclic Base Copper(II) Complexes, J. Inorg. Biochem., 94: 171-178 (2003).
[10] Zhang L., Niu S.Y., Jin J., Sun L.P., Yang G.D., Yie L., Preparation and Surface Photovoltage of Four Cu(II/I) Complexes, Chem. J. Chin. Universities., 30: 236-240 (2009).
[11] Solomon E.I., Sundaram U.M., Machonkin T.E., Multicopper Oxidases and Oxygenases, Chem. Rev., 96: 2563- 2606 (1996).
[12] Trofimenko S., Recent Advances in Poly(Pyrazolyl)Borate (Scorpionate) Chemistry, Chem. Rev., 93: 943-980 (1993).
[13] Willet R.D., Gatteschi D., Kahn O., “Magneto-Structural Correlations in Exchange Coupled Systems”, Reidel, Dordrecht, p. 1 (1984).
[14] Kahn  O., “Molecular Magnetism”, VCH Publishers, New York, p. 103 (1993).
[15] Sigman D.S., Perrin D.M., Chemical Nucleases, Chem. Rev., 93: 2295-2316 (1993).
[18] Zoroddu M.A., Zanetti S., Pogni R., Basosi R., An Electron Spin Resonance Study and Antimicrobial Activity of Copper(II)-Phenanthroline Complexes, J. Inorg. Biochem., 63: 291-300 (1996).
[21] Saha D.K., Sandbhor U., Shirisha K., Padhye S., Deobagkar D., Ansond C.E., Powelld A.K., A Novel Mixed-Ligand Antimycobacterial Dimeric Copper Complex of Ciprofloxacin and Phenanthroline, Bioorg. Med. Chem. Lett., 14: 3027-3032 (2004).
[22] Alarcón-Payer C., Pivetta T., Choquesillo-Lazarte D., González-Pérez J., Crisponi G., Castiñeiras A., Niclós-Gutiérrez J., Thiodiacetato-Copper(II) Chelates with or Without N- Heterocyclic Donor Ligands: Molecular and/or Crystal Structures of [Cu(tda)]n, [Cu(tda)(Him)2(H2O)] and [Cu(tda)(5Mphen)].2H2O (Him = imidazole, 5Mphen = 5- Methyl-1,10-Phenanthroline), Inorg. Chim. Acta, 358: 1918-1926 (2005).
[23] Amundsen A.R., Whelan J., Bosnich B., Biological Analogs. Nature of the Binding Sites of Copper-Containing Proteins, J. Am. Chem. Soc., 99: 6730- 6739 (1977).
[24] McCormick D.B., Griesser R., Sigel H. in “Metal Ions in Biological Systems”, ed. Sigel H., Dekker, New York, 1, p. 213 (1974).
[26] Braithwaite A.C., Rickard C.E.F., Waters T.N., Imine Hydrolysis Reactions in Copper(II) Complexes of N,N′-Ethylenebis-(Thiophen-2-Carbaldimine) and -(Pyridine-2-Carbaldimine), J. Chem. Soc. Dalton Trans., 2149-2153 (1975).
[27] Chin Ou C., Miskowski V.M., Lalancette R.A., Potenza J.A., Schugar M.J., Crystal and Molecular Structure of Bis[Beta-Methylmercaptoethylamine] Copper(II) Diperchlorate, Inorg. Chem., 15: 3157-3161 (1976).
[30] Merz L., Haase W., Exchange Interaction in Tetrameric Oxygen-Bridged Copper(II) Clusters of the Cubane Type, J. Chem. Soc., Dalton Trans., 875-879 (1980).
[31] Prochaska M.J., Schwindinger W.F., Schwartz M., Burk M.J., Bernarducci E., Lalancette R.A., Potenza J.A., Schugar H.J., Characterization of Apical Copper(II)-Thioether Bonding. Structure and Electronic Spectra of Bis(2,2-bis(5-phenyl-2-imidazolyl)propane)copper(II) Diperchlorate and Bis(1,3-bis(5-phenyl-2-imidazolyl)-2-Thiapropane) Copper(II) Diperchlorate, J. Am. Chem. Soc., 103: 3446-3455 (1981).
[34] Stoe & Cie, "X-AREA, Version 1.30: Program for the Acquisition and Analysis of Data", Stoe & Cie GmbH, Darmstadt, Germany, (2005).
[35] Stoe & Cie, "X-RED, Version 1.28b: Program for Data Reduction and Absorption Correction", Stoe & Cie GmbH, Darmstadt, Germany, (2005).
[36] Stoe & Cie, "X-SHAPE, Version 2.05: Program for Crystal Optimization for Numerical Absorption Correction", Stoe & Cie GmbH, Darmstadt, Germany, (2004).
[37] Sheldrick G. M., "SHELX97. Program for Crystal Structure Solution and Refinement", University of Gِttingen, Germany, (1997).
[38] Prince  E.(Ed.), "International Tables for X-ray Crystallography", vol. C, Kluwer Academic Publisher, Dordrecht, Netherlands, pp. 566-577 (2004).
[39] Stoe & Cie, "X-STEP32, Version 1.07b: Crystallographic Package", Stoe & Cie GmbH, Darmstadt, Germany, (2000).
[40] Thebo K., Shad H., Raftery J., Malik M., Mahmud T., O’Brien P., Synthesis, Characterization and X-Ray Diffraction of [Cu(malonate)(phen)­]2·17H­2O Complex, J. Mol. Struct., 1001: 12-15 (2011).
[42] Ito K., Bernstein H. J., The Vibrational Spectra of the Formate, Acetate, and Oxalate Ions, Can. J. Chem., 34: 170-178 (1956).
[44] Bush P.M., Whitehead J.P., Pink C.C., Gramm E.C., Eglin J. L., Watton S.P., Pence L.E., Electronic and Structural Variation among Copper(II) Complexes with Substituted Phenanthrolines, Inorg. Chem., 40: 1871-1877 (2001).
[47] Bonomo R.P., Rizzarelli E., Bresciani-Pahor N., Nardin G.,  Properties and X-Ray Crystal Structures of Copper(II) Mixed Complexes with Thiodiacetate and 2,2′-Bipyridyl or 2,2′:6′2″- Terpyridyl, J. Chem. Soc., Dalton Trans., 4: 681-685 (1982).
[48] Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; Twenty first informational Supplement. Clin Lab Stand Inst., 31(1): 1-165 (2011).