Visible Light Photodegradation of Phenol Using Nanoscale TiO2 and ZnO Impregnated with Merbromin Dye: A Mechanistic Investigation

Document Type: Research Article


1 Nuclear Science and Technology Research Institute, P.O. Box 11365-8486, Tehran, I.R. IRAN

2 Department of Chemistry, Payame Noor University, 19395-3697, Tehran, I.R. IRAN


ZnO and TiO2 nanoparticles wereimpregnated with merbromin dye and used as modified photocatalysts for degradation of phenol. Dye-modified ZnO and TiO2 showed significantly higher photocatalytic activity than neat ZnO and TiO2 under visible light illumination. Moreover, the prepared dye-modified ZnO showed superior photocatalytic efficiency in degradation of phenol compared to the dye-modified TiO2. In a period of 4 hours, dye-modified ZnO removed phenol almost completely while dye-modified TiO2 degraded it only to 47%. A cooperative working mechanism involving the possible photoactivation of both surface bound dye and semiconductor is proposed for the dye-modified systems. The suggested pathway is based on charge-transfer formalism. Furthermore, the study proposes some reasons for difference in reactivity of the dye-modified ZnO and TiO2 catalysts. Less aggregation of dye molecules on the surface of ZnO compared to TiO2 causes more prolonged lifetime of excited state of the dye on the surface of ZnO. Also, energy gap between the conduction band of semiconductor and LUMO level of merbromin in dye-modified ZnO is larger than dye-modified TiO2. Both above lead to more effective electron injection from the dye to ZnO which is hypothesized to be mainly responsible for the enhancement of the reaction rate of phenol degradation.


Main Subjects

[2] Guo M.Y., Fung M.K., Fang F., Chen X.Y., Ng A.M.C., Djurisic A.B., Chan W.K., Structural, Magnetic and Dielectric Properties of La2−xCaxNiO4+ (x= 0, 0.1, 0.2, 0.3), Journal of Alloys and Compounds, 509: 1333-1337 (2011).

[3] Mele G., Del Sole R., Vasapollo G., Garcia-Lopez E., Palmisano L., Schiavello M., Photocatalytic Degradation of 4-Nitrophenol in Aqueous Suspension by Using Polycrystalline TiO2 Impregnated with Functionalized Cu(II)-Porphyrin or Cu(II)–Phthalocyanine, J. Catal., 217: 334-342 (2003).

[4] Asahi R., Morikawa T., Ohwaki T., Aoki A., Taga Y., Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides, Science, 293: 269-271 (2001).

[5] Zhao B., Mele G., Pio I., Li J., Palmisano L., Vasapollo G., Degradation of 4-Nitrophenol (4-NP) Using Fe-TiO2 as a Heterogeneous Photo-Fenton Catalyst, J. Hazard Mater., 176: 569-574 (2010).

[7] Komai Y., Okitsu K., Nishimura R., Ohtsu N., Miyamoto G., Furuhara T., Semboshi S., Mizukoshi Y., Masahashi N., Visible Light Response of Nitrogen and Sulfur Co-Doped TiO2 Photocatalysts Fabricated by Anodic Oxidation, Catal. Today, 164: 399-403 (2011).

[8] Jia X., Fan H., Afzaal M., Wu X., Brien P.O., Solid State Synthesis of Tin-Doped ZnO at Room Temperature: Characterization and Its Enhanced Gas Sensing and Photocatalytic Properties, J. Hazard. Mater, 193: 194-199 (2011).

[9] Zhou S., Lv J., Guo L.K., Xu G.Q., Wang D.M., Zheng Z.X., Wu Y.C., Preparation and Photocatalytic Properties of N-Doped Nano-TiO2/Muscovite Composites, Applied Surface Science, 258: 6136-6141 (2012).

[10] Collazzo, G.C., Foletto, E.L., Jahn, S. L., Villetti, M.A., Degradation of Direct Black 38 Dye under Visible Light and Sunlight Irradiation by N-Doped Anatase TiO2 as Photocatalyst, J. Environ. Manag., 98: 107-111 (2012).

[11] Chatterjee D., Dasgupta S., Visible Light Induced Photocatalytic Degradation of Organic Pollutants, J. Photochem. Photobiol. C: Photo., 6: 186-205 (2005).

[12] Chatterjee D., Mahata A., Demineralization of Organic Pollutants on the Dye Modified TiO2 Semiconductor Particulate System Using Visible Light, Appl. Catal. B: Environ., 33: 119-125 (2001).

[13] Velmurugan R., Swaminathan M.,An Efficient Nanostructured ZnO for Dye Sensitized Degradation of Reactive Red 120 Dye Under Solar Light, Sol. Energ. Mat. Sol. C., 95: 942-950 (2011).

[15] Hilal H.S., Majjad L.Z., Zaatar N., El-Hamouz A., Dye-Effect in TiO2 Catalyzed Contaminant Photo-Ddegradation: Sensitization vs. Charge-Transfer Formalism, Solid. State. Sci., 9: 9-15 (2007).

[16] Hara K., Horiguchi T., Kinoshita T., Sayama K., Sugihara H., Arakawa H., Highly Efficient Photon-to-Electron Conversion with Mercurochrome-Sensitized Nanoporous Oxide Semiconductor Solar Cells, Sol. Energ. Mat. Sol. C., 64: 115-134 (2000).

[17] Hara K., Horiguchi T., Kinoshita T., Sayama K., Arakawa H., Influence of Electrolytes on the Photovoltaic Performance of Organic Dye-Sensitized Nanocrystalline TiO2 Solar Cells, Sol. Energ. Mat. Sol. C., 70: 151-161 (2001).

[18] Yang W.S., Jiang Y.S., Chai X.D., Li T.J., Fu L.S., Zhang H.J., Aggregation Behavior of Amphiphilic D-π-A Molecules Bearing Recognition Group, Sci. China: Chem., 43: 555-560 (2000).

[19] Liu Z., Pan K., Zhang Q., Liu M., Jia R., Lu Q., Wang D., Bai Y., Li T., The Performances of the Mercurochrome-Sensitized Composite Semiconductor Photoelectrochemical Cells Based on TiO2/SnO2 and ZnO/SnO2 Composites, Thin Solid Films, 468: 291-297 (2004).

[20] Vilhunen S.H., Sillanpä M.E., Ultraviolet Light Emitting Diodes and Hydrogen Peroxide in the Photodegradation of Aqueous Phenol, J. Hazard. Mater., 161: 1530-1534 (2009).

[21] Znaidi L., Seraphimova R., Bocquet J.F., Colbeau-Justin C., Pommir C., A Semi-Continuous Process for the Synthesis of Nanosize TiO2 Powders and Their Use as Photocatalysts, Mater. Res. Bull., 36: 811-825 (2001).

[22] Iliev V., Phthalocyanine-Modified Titania-Catalyst for Photooxidation of Phenols by Irradiation with Visible Light, J. photochem. photobiol A: Chem., 151: 195-199 (2002).

[23] Liu Z., Pan K., Wang M., liu M., Lu Q., Bai Y., Li T., Influence of the Mixed Ratio on the Photocurrent of the TiO2/SnO2 Composite Photoelectrodes Sensitized by Mercurochrome, J. Photochem. Photobiol. A: Chem., 157: 39-46 (2003).

[24] Matos J., Laine J., Herrmann J., Synergy Effect in the Photocatalytic Degradation of Phenol on a Suspended Mixture of Titania and Activated Carbon, Appl. Catal. B: Environ., 18: 281-291 (1998).

[25] Nada A.A., Barakat M.H., Hamed H.A., Mohamed N.R., Veziroglu T.N., Studies on the Photocatalytic Hydrogen Production Using Suspended Modified TiO2 Photocatalysts, Int. J. Hydrogen Energy, 30: 687-691 (2005).

[26] Zhao X., Quan X., Zhao H., Chen S., Zhao Y., Chen J., Different Effects of Humic Substances on Photodegradation of p,p′-DDT on Soil Surfaces in the Presence of TiO2 under UV and Visible Light, J. Photochem. Photobiol. A: Chem., 167: 177-183 (2004).