Application of Image Analysis in the Characterization of Electrospun Nanofibers

Document Type: Research Article


1 Materials and Energy Research Center, P.O. BOX 14155-4777 Tehran, I.R. IRAN

2 Faculty of Engineering Science, College of Engineering, University of Tehran, P. O. Box: 11155-4563 Tehran, I.R. IRAN

3 Central Research Laboratories, Shahid Beheshti University of Medical Sciences, Tehran, I.R. IRAN

4 Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, I.R. IRAN

5 Textile Engineering Department, Amirkabir University of Technology, Tehran, I.R. IRAN

6 esearch Institute of Applied Sciences -ACECR, Shahid Beheshti University, Tehran, I.R. IRAN


In this work, CoFe2O4 nanoparticles have been prepared by co-precipitation technique. The synthesized CoFe2O4 nanoparticles were applied in the preparation of CoFe2O4/Polyacrylonitrile fiber nanocomposites by the electrospinning process. The prepared nanoparticles and nanofibers were characterized using the Scanning Electron Microscopy (SEM) and X-ray diffraction methods. The results manifested that nanofibers of PAN and CoFe2O4 /PAN were successfully prepared with electrospinning method. Grayscale SEM images of nanofibers were analyzed by a new image analysis procedure for determination of fibers diameter, their diameter distribution and the compactness of electrospun nanofibers. It was found that the presence of CoFe2O4 nanoparticles in the PAN solution increases both of the compactness of electrospun nanofibers and their diameter. The prepared CoFe2O4/Polyacrylonitrile fiber nanocomposites have possible applications in fabrication of sensor and magnetic recording media.


Main Subjects

[1] Jung K.H., Pourdeyhimi B., Zhang X., Selective Permeation of Cross-Linked Polyelectrolyte and Polyelectrolyte-Filled Nonwoven Membranes, J. Appl. Polym Sci., 123: 227-233 (2012).

[2] Moghaddam A.B., Hosseini S., Badraghi J., Banaei A., Hybrid Nanocomposite Based on CoFe2O4 Magnetic Nanoparticles and Polyaniline, Iran. J. Chem. Chem. Eng., 29: 173-179 (2010).

[3] Yener F., Jirsak O., Gemci R., Using a Range of PVB Spinning Solution to Acquire Diverse Morphology for Electrospun Nanofibres, Iran. J. Chem. Chem. Eng., 31: 49-58 (2012).

[4] Modarresi S., Dehghani M.R., Alimardani P., Kazemi Sabzvar S., Feyzi, F., Measurement and Modeling of Mean Ionic Activity Coefficient in Aqueous Solution Containing NaNO3 and Poly Ethylene Glycol, Iran. J. Chem. Chem. Eng., 32: 31-39 (2013).

[5] Jamaloei B.Y., Kharrat R., The performance Evaluation of Viscous-Modified Surfactant Waterflooding in Heavy oil Reservoirs at Varying Salinity of Injected Polymer-Contained Surfactant Solution, Iran. J. Chem. Chem. Eng., 31: 99-111 (2012).

[6] Moghaddam A.B., Nazari T., Badraghi J., Kazemzad M., Synthesis of ZnO Nanoparticles and Electrodeposition of Polypyrrole/ZnO Nanocomposite Film, Int. J. Electrochem. Sci., 4, 247-257 (2009).

[7] Nabid M.R., Golbabaee M., Moghaddam A.B., Mahdavian A.R., Amini M.M., Preparation of the γ-Al2O3/PANI Nanocomposite via Enzymatic Polymerization, Polym. Comp., 30: 841-846 (2009).

[8] Nabid M.R., Shamsianpour, M., Sedghi, R., Moghaddam, A.B., Enzyme-Catalyzed Synthesis of Conducting Polyaniline Nanocomposites with Pure and Functionalized Carbon Nanotubes, Chem. Eng. Technol., 35: 1707-1712 (2012).

[9] Khajeamiri A.R., Kobarfard F., Moghaddam A.B., Application of Polyaniline and Polyaniline/Multiwalled Carbon Nanotubes-Coated Fibers for Analysis of Ecstasy, Chem. Eng. Technol., 35: 1515-1519 (2012).

[10] Nabid M.R., Shamsianpour M., Sedghi R., Moghaddam A.B., Asadi S., Osati S., Safari N., Biomimetic Synthesis of a Water-Soluble Conducting Polymer of 3,4-Ethylenedioxythiophene, Chem. Eng. Technol., 36: 130- 136 (2013).

[11] Gudarzy F., Moghaddam A.B., Mozaffari S., Ganjkhanlou Y., Kazemzad M., Zahed R., Bani F., A Lanthanide Nanoparticle-Based Luminescent Probe for Folic Acid, Microchim. Acta, 180, 1257-1262 (2013).

[12] Ganjkhanlou Y., Hosseinnia A., Kazemzad M., Moghaddam A.B., Khanlarkhani A., Y2O3: Eu,Zn Nanocrystals as a Fluorescent Probe for the Detection of Biotin, Microchim. Acta, 177: 473-478 (2012).

[13] Mohammadi A., Moghaddam,A.B., Direct Electrochemistry and Electrocatalysis of Immobilised Cytochrome c on Electrodeposited Nanoparticles for the Reduction of Oxygen, Micro Nano Lett., 7: 951-954 (2012).

[14] Mohammadi Moghaddam A.B., Esmaieli M., Khodadadi A.A., Ganjkhanlou Y., Asheghali D., Direct Electron Transfer and Biocatalytic Activity of Iron Storage Protein Molecules Immobilized on Electrodeposited Cobalt Oxide Nanoparticles, Microchim. Acta,173: 317-322 (2011).

[15] Sangmanee M., Maensiri S., Nanostructures and Magnetic Properties of Cobalt Ferrite (CoFe2O4) Fabricated by Electrospinning,  Appl. Phys. A, 97: 167-177 (2009).

[16] Wang Z., Liu X., Lv M., Chai P., Liu Y., Meng J., Preparation of Ferrite MFe2O4 (M = Co, Ni) Ribbons with Nanoporous Structure and Their Magnetic Proper-Ties, J. Phys. Chem. B, 112: 11292-11297 (2008).

[17] Wang L., Yu Y., Chen P.C., Zhang D.W., Chen C.H., Electrospinning Synthesis of C/Fe3O4 Composite, J. Power Sources, 183: 717-723 (2008).

[18] Wu J., Coffer J.L., Strongly Emissive Erbium-Doped Tin Oxide Nanofibers Derived from Sol Gel/Electrospinning Methods, J. Phys. Chem. C, 111: 16088-16091 (2007).

[19] Yu J.H., Rutledge G.C., “Encyclopedia of Polymer Science and Technology”, John Wiley & Sons, New Jersey (2007).

[20] Shao C., Guan H., Liu Y., Mu R., MgO Nanofibres via an Electrospinning Technique, J. Mater. Sci., 41: 3821-3824 (2006).

[21] Guo Q.Z., Mao H.K., Hu J.Z., Shu J.F., Hemley R.J., The Phase Transitions of CoO Under Static Pressure to 104 GPa, J. Phys. Condens. Matter., 14: 11369-11374 (2002).

[22] Fallahi D., Raļ¬zadeh M., Mohammadi N., Vahidi B., Effect of LiCl and Non-Ionic Surfactant on Jet Electric Current and Flow Rate in Electrospinning of Polyacrylonitrile Solutions, Polym. Int., 57: 1363-1368 (2008).

[23] Li D., McCann J.T., Xia Y., Use of Electrospinning to Directly Fabricate Hollow Nanofibers with Functionalized Inner and Outer Surfaces, Small, 1: 83-86 (2005).

[24] Li D., McCann J.T., Xia Y., Marquez M., SEM Image of a Layer-by-Layer Stacked thin Film of PVP Nanofibers, J. Am. Ceram. Soc., 89: 1861-1869 (2006).

[25] Li D., Xia Y., Electrospinning Provides a Simple and Versatile Method for Generating Continuous Ultra-Thin Fibers, Adv. Mater., 16: 1151-1170 (2004).

[26] Chatterjee S., Polymer-ITO Nanocomposite Template for the Optoelectronic Application, J. Mater. Sci., 43: 1696-1700 (2008).

[27] Reneker D.H., Yarin A.L., Fong H., Koombhongse, S., Bending Instability of Electrically Charged Liquid Jets of Polymer Solutions in Electrospinning, J. Appl. Phys., 87: 4531-4547 (2000).

[28] Reneker D.H., Chun I., Nanometre Diameter Fibres of Polymer, Produced by Electrospinning, Nanotechnology, 7: 216-223 (1996).

[29] Chen R., Zhao S., Han G., Dong J., Fabrication of the Silver/Polypyrrole/Polyacrylonitrile Composite Nanofibrous Mats, Mater. Lett., 62: 4031-4034 (2008).

[30] Yu J.H., Rutledge G.C., “Encyclopedia of Polymer Science and Technology”, PP 1-20, John Wiley & Sons (2007).

[31] Patra S.N., Easteal A.J., Bhattacharyya D., Parametric Study of Manufacturing Poly(Lactic) Acid Nanofibrous Mat by Electrospinning, J. Mater. Sci., 44: 647-657 (2009).

[32] Moghaddam A.B., Gudarzy F., Ganjkhanlou Y., A Fluorescent Probe for Detecting Thiamine Using the Luminescence Intensity of Nanoparticles, J. Fluoresc., (2014) DOI 10.1007/s10895-014-1377-0.

[33] Dabaghi H.H., Ganjkhanlou Y., Kazemzad M., Moghaddam A.B., Relation Between Conductance, Photoluminescence Bands and Structure of ITO Nanoparticles Prepared by Various Chemical Methods, Micro Nano Lett., 6: 429-432 (2011).

[34] Mohammadi A., Ganjkhanlou Y., Moghaddam A.B., Kazemzad M., Hessari F.Al., Dinarvand R., Synthesis of Nanocrystalline Y2O3:Eu Phosphor Through Different Chemical Methods: Studies on the Chromaticity Dependence and Phase Conversion, Micro Nano Lett., 7: 515-518 (2012).

[35] Ziabari M., Mottaghitalab V., McGovern S.T., Haghi A.K., A New Image Analysis Based Method for Measuring Electrospun Nanofiber Diameter, Nanoscale Res. Lett., 2: 597-600 (2007).

[36] Ziabari M., Mottaghitalab V., McGovern S.T., Haghi A.K., Measuring Electrospun Nanofibre Diameter: A Novel Approach, Chinese Phys. Lett., 25:3071-3074 (2008).

[37] Otsu N., Threshold Selection Method from Gray-Level Histograms, IEEE Trans. Sys. Man. Cybern. Soc., 9: 62-66 (1979).

[38] Gonzalez R., Woods R., Eddins S., “Digital Image Processing Using Matlab”, Prentice Hall, New Jersey (2002).

[39] Pourdeyhimi B., Dent R., Measuring Fiber Diameter Distribution in Nonwovens, Textil Res. J., 69: 233-236 (1999).