Absorption Spectra and Electron Injection Study of the Donor Bridge Acceptor Sensitizers by Long Range Corrected Functional

Document Type : Research Article

Author

Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, P.O. Box 9004, SAUDI ARABIA

Abstract

Ground state geometries have been computed using Density Functional Theory (DFT) at B3LYP/6-31G(d,p) level of theory. The excitation energies and spectroscopic parameters have been computed using Long range Corrected (LC) hybrid functional by Time Dependent Density Functional Theory (TDDFT) with LC-BLYP level of theory. The Polarizable Continuum Model (PCM) has been used for evaluating bulk solvent effects at all stages. The efficient materials have been predicted and electron injection (ΔGinject), electron coupling constant ( |VRP| ) and Light Harvesting Efficiency (LHE) has been discussed. By elongating the bridge all these three parameters ΔGinject, |VRP| and LHE enhanced which revealed that new designed sensitizers would be efficient.

Keywords

Main Subjects


[1] O'Regan B., Gratzel M., A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films, Nature, 353: 737-740 (1991).
[2] Nazeeruddin Md. K., Kay A., Rodicio I., Humphrey-Baker R., Muller E., Liska P., Vlachopoulos N., Gratzel M., Conversion of Light to Electricity by Cis-X2bis (2,2′-bipyridyl-4,4′-dicarboxylate) Ruthenium(II) Charge Transfer Sensitizer (X) Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes, J Am Chem Soc, 115: 6382-6390 (1993).
[3] Hara K., Sayama K., Ohga Y., Shinpo A., Sugab S., Arakawa H., A Coumarin-Derivative Dye Sensitized Nanocrystalline TiO2 Solar Cell Having a High Solar-Energy Conversion Efficiency up to 5.6%, Chem Commun, 6: 569-570 (2001).
[4] Chen Z.G., Li F.Y., Huang C.H., Organic D-π-A Dyes for Dye-Sensitized Solar Cell, Curr Org Chem, 11: 1241-1258 (2007).
[6] Li G., Jiang K.J., Li Y.F., Li S.L., Yang L.M., Efficient Structural Modification of Triphenylamine-Based Organic Dyes for Dye-Sensitized Solar Cells, J Phys Chem C, 112: 11591-11599 (2008).
[7] Nazeeruddin M.K., De Angelis F., Fantacci S., Selloni A., Viscardi G., Liska P., Ito S., Bessho T., Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers, J Am Chem Soc., 127: 16835-16847 (2005).
[8] Wang S.Z., Cui Y., Hara K., Dan-Oh Y., Kasada C., Shinpo A., A High-Light-Harvesting-Efficiency Coumarin Dye for Stable Dye-Sensitized Solar Cells, Adv Mater, 19: 1138-1141 (2007).
[9] Sayama K., Hara K., Mori N., Satsuki M., Suga S., Tsukagochi S., Abe Y., Sugihara H., Arakawa H., Photosensitization of a Porous TiO2 Electrode with Merocyanine Dyes Containing a Carboxyl Group and a Long Alkyl Chain, Chem Commun, 1173-1174 (2000).
[10] Horiuchi T., Miura H., Sumioka K., Uchida SHigh Efficiency of Dye-Sensitized Solar Cells Based on Metal-Free Indoline Dyes, J Am Chem Soc, 126: 12218-12219 (2004).
[11] Hara, K.; Horiguchi, T.; Kinoshita, T.; Sayama, K.; Sugihara, H.; Arakawa, H., Highly Efficient Photon-to-Electron Conversion with Mercurochrome-Sensitized Nanoporous Oxide Semiconductor Solar Cells, Sol Energy Mater Sol Cells, 64: 115-134 (2000).
[12] Stathatos E., Lianos P., Laschewsky A., Ouari O., Van Cleuvenbergen P., Synthesis of a Hemicyanine Dye Bearing Two Carboxylic Groups and Its Use as a Photosensitizer in Dye-Sensitized Photoelectrochemical Cells, Chem Mater, 13: 3888-3892 (2001).
[13] Chen R., Yang X., Tian H., Wang X., Hagfeldt A., Sun L., Effect of Tetrahydroquinoline Dyes Structure on the Performance of Organic Dye-Sensitized Solar Cells, Chem Mater, 19: 4007-4015 (2007).
[14] Baik C., Kim D., Kang M.S., Song K., Sang O.K., Ko J., Synthesis and Photovoltaic Properties of Novel Organic Sensitizers Containing Indolo[1,2-f] Phenanthridine for Solar Cell, Tetrahedron, 65: 5302-5307 (2009).
[15] Ferrere S., Zaban A., Gregg B., Dye Sensitization of Nanocrystalline Tin Oxide by Perylene Derivatives, J Phys Chem B, 101: 4490-4493 (1997).
[16] Ferrere S., Gregg B., New Perylenes for Dye Sensitization of TiO2, New J Chem, 26: 1155-1160 (1997).
[17] (a) Xu W., Peng B., Chen J., Liang M., Cai F., New Triphenylamine-Based Dyes for Dye-Sensitized Solar Cells, J Phys Chem C, 112: 874-880 (2008).
        (b) Irfan A., Al-Sehemi A.G., Asiri A.M., J Mol Model, DOI 10.1007/s00894-012-1372-9 (2012).
[18] Frisch M.J., Trucks G.W., Schlegel H.B. et al., "Gaussian 09", Revision A.1; Gaussian, Inc.: Wallingford, CT (2009).
[19] Politzer P., Abu-Awwad F., Some Approximate Kohn-Sham Molecular Energy Formulas, Mol Phys, 95: 681-688 (1998).
[20] Abu-Awwad F., Politzer P., Variation of Parameters in Becke-3 Hybrid Exchange-Correlation Functional, J Comput Chem, 21: 227-238 (2000).
[21] Preat J., Jacquemi D., Perpete E.A., Design of New Triphenylamine-Sensitized Solar Cells: A Theoretical Approach, Environ Sci Technol, 44: 5666–5671 (2010).
[22] Preat J., Michaux C., Jacquemin D., Perpe`te E.A., Enhanced Efficiency of Organic Dye-Sensitized Solar Cells: Triphenylamine Derivatives, J Phys Chem C, 113: 16821–16833 (2009).
[23] Becke A.D., A New Mixing of Hartree-Fock and Local Density‐Functional Theories, J Chem Phys  98: 1372-1377 (1993).
[26] Krishnan R., Binkley J.S., Seeger R., Pople J.A., Self-Consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions, J Chem Phys, 72: 650-655 (1980).
[29] Wong B.M., CordaroJ.G., Coumarin Dyes for Dye-Sensitized Solar Cells: A Long-Range-Corrected Density Functional Study, J Chem Phys, 129: 214703-214710 (2008).
[32] Toulouse J., Colonna F., Savin A., Short-Range Exchange and Correlation Energy Density Functionals: Beyond the Local-Density Approximation, J Chem Phys, 122: 014110-014119 (2005).
[33] Livshits E., Baer R., A Well-Tempered Density Functional Theory of Electrons in Molecules, Phys Chem Chem Phys, 9: 2932-2941 (2007).
        (e) Irfan A., Highly Efficient Renewable Energy Materials Benzo[2,3-b]Thiophene Derivatives: Electronic and Charge Transfer Properties Study, Optik - Inter J Light Elect Optics 125: 4825-4830 (2014).
        (f) Irfan, A., First Principle Investigations to Enhance the Charge Transfer Properties by Bridge Elongation, J Theor Comput Chem, 13: 1450013-1450024 (2014).
     (h) Irfan, A., Jin, R., Al-Sehemi, A.G., Asiri, A.M., Quantum Chemical Study of the Donor-Bridge-Acceptor Triphenylamine Based Sensitizers, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 110: 60-66 (2013).
        (j) Irfan A., Al-Sehemi A.G., Al-Assiri M.S., Modeling of Multifunctional Donor-Bridge-Acceptor 4,6-Di(Thiophen-2-yl)Pyrimidine Derivatives: A First Principles Study, J Mol Graphics Modell, 44: 168-176 (2013).
       (l) Chaudhry, A.R., Ahmed, R., Irfan, A., Muhammad, S., Shaari, A., Al-Sehemi, A.G., Effect of Heteroatoms Substitution on Electronic, Photophysical and Charge Transfer Properties of Naphtha [2,1-b:6,5-b′] Difuran Analogues by Density Functional Theory, Comp Theor Chem, 1045: 123-134 (2014). 
[36] Zhang C.R., Liang W.Z., Chen H.S., Chen Y.H., Wei Z.Q., Wu Y.Z., Theoretical Studies on the Geometrical and Electronic Structures of N-Methyle-3,4-Fulleropyrrolidine. J Mol Struct (THEOCHEM), 862: 98-104 (2008).
[37] Cossi M., BaroneV., Time-Dependent Density Functional Theory for Molecules in Liquid Solutions, J Chem Phys, 115: 4708-4717 (2001).
[38] Amovilli C., Barone V., Cammi R., Cancès E., Cossi M., Mennucci B., Pomelli C.S., Tomasi J., Recent Advances in the Description of Solvent Effects with the Polarizable Continuum Model, Adv Quant Chem, 32: 227-262 (1998).
[39] Tomasi J., Mennucci B., Cammi R., Quantum Mechanical Continuum Solvation Models, Chem Rev, 105: 2999-3094 (2005).
[40] Preat J., Jacquemin D., Perpete E., Design of New Triphenylamine-Sensitized Solar Cells: A Theoretical Approach, Environ Sci Technol, 44: 5666–5671 (2010).
[41] Pourtois G., Beljonne J., Ratner M.A., Bredas J.L., Photoinduced Electron-Transfer Processes Along Molecular Wires Based on Phenylenevinylene Oligomers: A Quantum-Chemical Insight, J Am Chem Soc, 124: 4436-4447 (2002).
[43] Marcus R.A., Electron Transfer Reactions in Chemistry. Theory and Experiment, Rev Mod Phys, 65: 599-610 (1993).
[44] Asbury J.B., Wang Y.Q., Hao E., Ghosh H., Lian T., Evidences of Hot Excited State Electron Injection from Sensitizer Molecules to TiO2 Nanocrystalline Thin Films, Res Chem Intermed, 27: 393-406 (2001).
[45] Katoh R., Furube A., Yoshihara T., Hara K. et al., Efficiencies of Electron Injection from Excited N3 Dye Into Nanocrystalline Semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) Films, J Phys Chem B, 108: 4818-4822 (2004).
[46] Hagfeldt A., Grätzel M., Light-Induced Redox Reactions in Nanocrystalline Systems, Chem Rev, 95: 49-68 (1995).
[47] Barbara P.F., Meyer T.J., Ratner M.A., Contemporary Issues in Electron Transfer Research, J Phys Chem, 100: 13148-13168 (1996).
[48] De Angelis F., Fntacci S., Selloni A., Alignment of the Dye's Molecular Levels with the TiO2 Band Edges in Dye-Sensitized Solar Cells: a DFT–TDDFT Study, Nanotechnology, 19: 424002-424009 (2008).
[49] Nalwa H.S., "Handbook of Advanced Electronic and Photonic Materials and Devices", Academic: San Diego CA (2001).
[50] Cassida M., "Recent Advances in Density Functional Methods: Time Dependent Density Functional Response Theory for Molecules", DP Chong: Singapore (1995)
[51] Harris D.C., Bertolucci M.D, "Symmetry and Spectroscopy", Dover: New York US (1998).