MULTINUCLEAR VARIABLE TEMPERATURE NMR STUDIES ON CYANIDE, WATER AND HYDROXYL GROUP SCRAMBLING ON HALOGENATION OF K₂[Pt(CN)₄] AND RELATED REACTIONS

Sabounchei, Javad* and Salehzadeh, Sadegh
Department of Chemistry, Faculty of Science, Bu-Ali-Sina University,
Zip code 65174, Hamadan, I.R. Iran.

ABSTRACT: ¹⁹⁵Pt and ¹H NMR has been used to show that addition of chlorine and bromine to $[Pt(CN)_4]^{2-}$ in presence of perchloric acid in water results in cyanide and water scrambling with formation of eleven complexes of the type $[Pt(CN)_{4-n}Cl(H_2O)_{n+1}]^{(n-1)+}$ (n=0,1,2,3,4). Addition of NBu₄OH to this solution gives $(NBu_4)_2[Pt(CN)_4Cl(OH)]$. NMR measurements in acetone also show cyanide and hydroxyl group scrambling with formation of complexes of the type $[Pt(CN)_{4-n}Cl(OH)_{n+1}]^{2-}$, (n=0,1,2,3,4).

KEY WORDS: Multinuclear NMR, Scrambling, Halogenation.

INTRODUCTION

Halogen scrambling is wide spread when preparing complexes which contain mixed halogens via oxidative-addition reactions [1,2]. It was claimed on the basis of visible spectroscopic studies that oxidative reaction of $[Pt(CN)_4]^{2-}$ with bromine in presence of perchloric acid in pH<3 results initially in formation of trans- $[Pt(CN)_4Br_2]^{2-}$ [3,4]. Vulik et al. have prepared trans- $[Pt(CN)_4Br(OH_2)]^{-}$ with a similar procedure in pH<7 [5]. Drougge and Elding have studied oxidative addition reactions of $[Pt(CN)_4]^{2-}$ with Cl_2 in pH<7 which obtained trans- $[Pt(CN)_4 - Cl(OH_2)]^{-}$ [6,7].

EXPERIMENTAL

¹⁹⁵Pt and ¹H NMR spectra were recorded on JEOL FX-90Q Spectrometer using 10 mm NMR tubes. IR spectra were measured on a Perkin-Elmer 457 spectrophotometer (in acetone and nujol) and microanalysis were done at the University of Liverpool in U.K.

Addition of 1 mol of Cl_2 or Br_2 to an aqueous solution of 1 mol of $K_2[Pt(CN)_4]$, gave yellow-orange crystalline solids which analyzed for $K[Pt(CN)_4 - Cl(OH_2)]$ (A) and $K[Pt(CN)_4Br(OH_2)]$ (B), respectively. Tetrabutylammonium salt was prepared by addition of NBu_4OH to the above reaction mixtures. This

^{*} To whom correspondence should be addressed 1021-9986/98/2/61 5/\$/2.50

Fig. 1: Structures of eleven complexes of the type $[Pt(CN)_{4-n}Cl(OH_2)_{n+1}]^{(n-1)+}$ (n=0, 1, 2, 3, 4) (These structures are also possible for $[Pt(CN)_{4-n}Cl(OH)_{n+1}]^{2-}$ (n=0, 1, 2, 3, 4)).

resulted in >90% yield of (NBu₄)₂[Pt(CN)₄Cl(OH)] (C) and $(NBu_4)_2[Pt(CN)_4Br(OH)]$ (D). The same general procedure was used for the preparation of Pt(IV) complexes containing chloride, bromide, hydroxyl and water molecule [8]. To a solution of $K_2[Pt(CN)_4]$ (0.37 g) in water (20 mL) was added a solution of chlorine (0.6 g) in carbon tetrachloride (5 mL) in presence of perchloric acid (1 M) which was stirred for few minutes. The yellow organe solution was concentrated untill a yellow crystalline solid was precipitated which was filtered off and dried in vacuum. Slow addition of 40% NBu₄OH (8 mL) in acetone (5 mL) to the above solution (before concentration) produced an immediate precipitate of C which was recrystallized from acetone-petroleum ether (b.p. 60-80) to give yellow crystals. The

complex C also was prepared via addition of freshly prepared hypochlorous acid (2.94 mL) to the solution of K₂[Pt(CN)₄], (0.534 g) in water (20 mL). The solution was stirred for 10 minutes and treated with NBu₄OH in acetone (8 mL) and yellow precipitate of C appeared which was recrystallized from acetone-petroleum ether to give yellow crystalline solids. Microanalysis data for this complexes are given in Table 4.

RESULTS AND DISCUSSION

¹⁹⁵Pt NMR spectrum of A consist of seven lines which are due to the eleven possible species (including isomers) of $[Pt(CN_{4-n}Cl(OH_2)_{n+1}]^{(n-1)+}$ (n= 0, 1, 2, 3, 4) as reported in Table 1 and Fig. 1. The progressive replacement of cyanide by water mole-

Table 1: ¹⁹⁵Pt NMR data for $[Pt(CN)_{4-n}Cl(H_2O)_{n+1}]^{(n-1)+}$ (n=0, 1, 2, 3, 4) in D_2O .

n	0		1	2	3	4	
$\delta_{ ext{Pt}}(ext{ppm})^*$	-5273	-5255	-4088	-2718	-2002	-2028	-1487

* Chemical shift internal H₂[PtCl₆] with positive shifts being to high frequency.

cules produces a systematic shift to higher frequency (low field) as has been observed for other Pt(II) and Pt(IV) complexes [9, 10, 11]. The separation between these type of geometric isomers in aqueous solution is much less than that observed in other solvents such as acetone- d_6 .

¹H NMR spectrum of A (Fig. 2a) consists of one set of seventeen approximately equally spaced lines, follows from a comparison with systematic trends observed upon substitution of chloride by bromide in [Pt Br_xCl_{4-x}(PEt₃)L] (x= 0, 1, 2, 3, 4), [Pt Br_yCl_{5-y}-(P Et₃)]⁻ (y= 0, 1, 2, 3, 4, 5) and [Pt Br_{3-a}Cl_a(PEt₃)]⁻ (a= 0, 1, 2, 3)[2,12]. Thus there are seventeen approximately equally spaced resonances due to a progressive replacement of cyanides by water molecules leaving chloride unsubstituted at axial position in octahedral structure, see Table 2, 3 and Fig. 3. This also has been observed in $[Pt(CN)_5I]^{2-}$ with exchanging five cyanide ligands in oxidative reaction of $[Pt(CN)_4]^{2-}$

Fig. 2: ¹H NMR spectrum of a) $[Pt(CN)_{4-n}Cl(H_2O)_{n+1}]^{(n-1)+}$ (n=0, 1, 2, 3, 4) and b) mixture of $[Pt(CN)_{4-n}Cl(OH)_{n+1}]^{2-}$ (n=0, 1, 2, 3, 4) and $[Pt(CN)_{4-n}Cl(OH_2)_{n+1}]^{(n-1)+}$ (n=0, 1, 2, 3, 4) in D_2O and acetone- d_6 respectively.

Table 2: ¹H NMR data for isomers of $[Pt(CN)_{4-n}Cl-(H_2O)_{n+1}]^{(n-1)+}$ (n = 0, 1, 2, 3, 4) in D_2O at 25°C.

1010							
n	Kind of proton	δ _H * d(ppm)	J _{Pt-H} (Hz)				
		-2					
•	a	1.83	101.6				
0	b	2.39	99.9				
1	С	3.52	102.5				
	d	4.04	102.5				
	e	4.64	101.6				
	e'	5.21					
	f	5.89	101.6				
2	g	6.23	101.6				
	h	6.91	101.6				
	i	7.6	100.6				
3	i'	8.03	100.6				
	j	8.60	99.6				
	k	9.18	100.6				
	1	10.31	101.5				
4	m	10.89	100.6				

^{*} Chemical shift internal Me₄Si with positive shifts being to high frequency.

with ICN without any exchange in iodide position [13]. In order to account intensities of various complexes we used the Eq. (1):

$$I_2 = \frac{I_1 \cdot p_2 \cdot n_2}{p_1 \cdot n_1} \tag{1}$$

where:

 I_1 = total intensity of $[Pt(CN)_4Cl(H_2O)]^-$ (6 m.m), I_2 = total intensity of any other species (in m.m), p_1 = probability of presence of $[Pt(CN)_4Cl(H_2O)]^-$ = 1, p_2 = probability of presence of any other species, n_1 = number of proton in $[Pt(CN)_4Cl(H_2O)]^-$ = 1, n_2 = number of equivalent proton in any other species.

Direct integration of resonances due to eleven species in ¹H NMR spectra (Fig. 2) did not correspond to the intensities predicted in Fig. 3 and Table 3. In other words for a statistical scrambling of water and cyanides we would never have the expected and observed equilibrium constant to be exactly the same. Similar results for a statistical scrambling of halogens have been observed [1,12,14]. Similar number of

Table 3: Calculated intensities of	¹ H NMR of [Pt(CN) _{4-n} Cl(H ₂ O) _{n+}	(n=0, 1, 2, 3, 4) with Eq. (1).
------------------------------------	---	---------------------------------

n	Kind of	Number of	Probability	Total intersity	Intensities of triplet
	proton	proton(s)		(m.m)	(m.m)
	a	1	1	0.6	0.1:0.4:0.1
0	race p	1	4	2.4	0.4:1.6:0.4
	С	1	1	0.6	0.1:0.4:0.1
	d	2	2	2.4	0.4:1.6:0.4
1	e	1	4	2.4	0.4:1.6:0.4
	e'	2	4	4.8	0.8:3.2:0.8
,	f	2	1	1.2	0.2:0.8:0.2
2	g	4	2	4.8	0.8:3.2:0.8
	h	2,1	4,2	6.0	1.0:4.0:1.0
	i	4	1	2.4	0.4:1.6:0.4
	i'	2	2	2.4	0.4:1.6:0.4
3	j	1	1	0.6	0.1:0.4:0.1
	k	1	2	1.2	0.2:0.8:0.2
	1	4	1	2.4	0.4:1.6:0.4
4	m	1	1	0.6	0.1:0.4:0.1

Fig. 3: Expected lines for ${}^{1}H$ resonances of $[Pt(CN)_{4-n} - Cl(H_{2}O)_{n+1}]^{(n-1)+}$ (n=0, 1, 2, 3, 4).

expected lines in Fig. 3 and observed resonances in Fig. 2a is reached except that two peaks with very low intensities in far and of two sides of spectrum can not be observed.

Variable temperature ¹H NMR spectrum of the non aqueous solution resulting from the addition of NBu₄OH to the **A** was studied which shows that halogen-hydroxyl group scrambling occurs at various temperatures and spectrum of the eleven possible species due to $[Pt(CN)_{4-n}Cl(OH)_{n+1}]^{2-}$ (n= 0, 1, 2, 3, 4) is very simillar to the spectrum of **A**, Figs. 1 and 2b.

IR spectrum of A and C show of a broad peaks at 2100-2250 and 3600 cm⁻¹ regions which are due to $-C \equiv N$ and -O-H stretching frequencies in these complexes. Broadence of these peaks are due to probably eleven species.

ACKNOWLEDGMENT

We are most grateful to the University of Bu-Ali-Sina for a grant and Mr. M. Zebarjadian for recording the NMR spectra and the University of Liverpool in U.K. for microanalysis data.

Received, 20th September 1996; Accepted, 15th September 1997

Table 4: Microanalysis data of prepared complexes.

TO STEED VY	Calculated(%)			Found(%)				
Compound	С	Н	N	Cl	С	Н	N	Cl
$(NBu_4)_2[Pt(CN)_4Cl(OH)]$	51.7	8.8	10.0	4.2	52.6	8.9	10.3	4.1
$(NBu_4)_2[Pt(CN)_4Br(OH)]$	49.1	8.3	9.5		49.8	8.3	9.1	-)

REFERENCES

- [1] Heaton, B. T. and Kelsey, R. J., *Inorg. Nucl. Chem. Letters*, 11, 363(1975).
- [2] Heaton, B. T. and Timins, K. J., J. Chem. Soc. Chem. Comm., 931(1973).
- [3] Mason, W. R., Inorg. Chem., 10, 1914(1971).
- [4] Morgan, K. A. and Jones, M., J. Inorg. Nucl. Chem., 34, 275(1972).
- [5] Vulik, C. J. and Poe, A., *Inorg. Chim. Acta.*, 34, 129(1974).
- [6] Drougge, L. and Elding, L. I., *Inorg. Chem.*, 24, 2292(1985).
- [7] Drougge, L. and Elding, L. I., *Inorg. Chim. Acta.*, **121**, 175(1986).

- [8] Elding, L. I. and Gustafson, L., *Inorg. Chim.* Acta., 19, 31(1976).
- [9] Zelewsky, A. V., Helv, Inorg. Chim. Acta., 51, 803 (1968).
- [10] Mcfarlane, W., J. Chem. Soc. Dalton, 324(1974).
- [11] Kenedy, J. D., Mcfarlane, W., Puddephatt, R. J. and Thompson, P. J., J. Chem. Soc. Dalton., 874 (1976).
- [12] Foot, R. J., Ph.D. Thesis, University of Liverpool U.K. (1975).
- [13] Brown, C., Heaton, B. T. and Sabounchei, J. S., J. Organomet. Chem., 142, 413(1977).
- [14] Ahrland, S., Chatt, J. and Davies, N. R., *Quart. Revs.*, 12, 265(958).