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ABSTRACT: Changes in the physicochemical conditions of process unit, even under control, may 

lead to what are generically referred to as faults. The cognition of causes is very important, because 

the system can be diagnosed and fault tolerated. In this article, we discuss and propose an artificial 

neural network that can detect the incipient and gradual faults either individually or mutually. The 

main feature of the proposed network is including the fault patterns in the input space. The scheme 

is examined through a sample unit with five probable occurring faults. The simulation results 

indicate that the proposed algorithm can detect both single and two simultaneous faults properly. 

 
KEY WORDS: Fault Tolerance, Fault Diagnosis, Incipient faults, Dual faults, Artificial Neural 

Networks. 

 
 
INTRODUCTION 

Faults in the broadest sense include symptoms 
resulting from physical changes, such as deviations of 
temperature or pressure from their normal operating 
range, as well as physical changes themselves, such as 
scaling, foaming, leaks, and wear. Even changes in 
unmeasured process parameters such as heat- or mass-
transfer coefficients can be deemed to be faults. Further, 
the gradual and incipient faults can cause the other ones 
exploring in a cascade manner and eventually lead the 
process to catastrophes [1]. The inspection task can be 
carried out using finite and certain numbers of measured 
noisy quantities as input to the fault detector module. The 
software inherent in the module should report the fault by 
these data. 

There are several quantitative techniques to explore 
the incipient faults [2-4]. The major parts of the researches 
include application of various observers - either linear 
 
 
 

or nonlinear - and henceforth need a great deal of complex 
and hard modeling tasks. The uncertainties in modeling 
add another complexity to the problem and the model 
error may cause a misleading alarm or on the contrary 
may lead to ignore a real fault. 

The expert systems equipped with either binary or 
multi-valued logics (like fuzzy logic) perform the fault 
tolerance in a qualitative manner [2,5]. One of their 
shortcomings is the necessity of relatively exact datum of 
rules or predicates. The data entries and editing of the 
large database need the expensive expertise of the plant 
technicians and engineers, hence it is time consuming and 
expensive and even more difficult than the rigorous 
modeling of plant [6, 7].  

The artificial neural networks are a convenient 
alternative of storing and representation of data related to 
fault tolerance tasks. The data, mapping and relations of  
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faults and measured quantities (in steady state) can be 
learned by the neural net and in practice, we can recall 
the net by inputting the measured quantities and ask the 
probable faults occurred. The neural nets have the 
capability of noise filtering and more important 
classifying and recognizing the patterns of faults [8,9]. 
They learn and adapt their parameters easily and can 
interpolate the multidimensional data elaborately. 

In this article we have attempted to evaluate the 
abilities of feed forward artificial neural networks to 
detect and classify the incipient process faults. In addition 
a new structure of these types of neural nets has been 
proposed. The main issue has been the recognition of 
simultaneously occurring faults. The proposed scheme 
detects not only the single fault accurately but also the 
simultaneous (two faults) ones precisely. 
 
The Artificial Neural Networks 

In this section we review the properties and structure 
of artificial neural networks for recognition of fault 
patterns. 

 
Artificial Nodes 

An artificial node is a computing element in which 
calculation and mapping of multidimensional inputs to 
one-dimensional output is carried out. The transfer 
function is often nonlinear and is represented by a sigmoid 
function. The mapping of input(s)-output relation for the 
j-Th node presented in the l-Th layer can be analytically 
represented by: 
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weight of every input and )l(
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layer (l). 
 

Network Structure  
Fig. 1 shows a common structure of a multi-layer feed 

forward  artificial  neural  network.  The  connections  are 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Structure of a multilayer artificial neural network. 
 
one-way and are directed from inputs to outputs. Every 

link is associated with a weight ( )l(
jw ), to multiply by the 

input value, taking part in the linear combination with the 
others. For fault detection purposes, output of the last 
layer, is the pattern of defect or fault. 
 
Process of Variables (number crunching) 

Every node in the layers receives the measured inputs, 
such as temperatures or pressures and processes the data 
through its transfer function and finally produces a local 
output. The outputs act as inputs to the nodes of next 
layer. It should be noted that the values of outputs and 
especially inputs might be regularized and/or normalized 
to avoid numerical errors such as propagation and 
truncation errors.  

 
Training  

The training of a network is the same as parameters 
adaptation or a least squares problem in the sense of 
optimization formulations. In other words the weights 
and also the threshold values of each layer in the whole 
structure of neural network are to be exposed by the 
target or desired outputs (fault types or patterns) corres-
ponding the inputs patterns. In the phase of learning, 
groups of inputs are fed into the network and the 
calculated outputs are examined and compared with 
desired or defined outputs, in which the faults are 
characte-rized by specific values of network output. The 
adaptation law is carried out using the error (the difference 
of desired and calculated outputs) emerging from triggered 
functions of neural network. The algorithm is generically 
referred as back-propagation technique.  

Nodes 

Nodes Nodes 

Output Vector Input Vector 
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Fig. 2: The proposed neural network fault detector. 
 
Network Test and Fault Detection 

After the parameter adjustment, we can test the func-
tionality of network by feeding some inputs other than 
the ones used in training phase. If the network is trained 
successfully it can be used to predict the process faults. 

 
Proposed Neural Net Structure 

Schematic structure of the proposed neural network 
has been shown in Fig. 2. The main issue in this structure 
is including  the fault patterns in the network input. This 
was done to emulate the reasoning and induction of 
patterns quantitatively. In addition, it improves the 
network performance for not only detecting individual 
faults but also for cognition of dual faults. 

 It should be mentioned that the better performance 
has been obtained at the expense of more computation 
efforts. 
 
Training Patterns 

As can be seen from Fig.2, the network needs the 
fault patterns as part of the input. By the fault pattern, we 
mean a set of system parameter values, which defines a 
specific faulty condition. The process or its model can be 
used to produce the fault patterns through experiment or 
by simulation. Every cycle of training includes the pairs 
of input-output patterns. The input pattern consists of two 
major parts, one the pure inputs including the values of 
steady state quantities as independent variables, and the 
other, the fault patterns. The output pattern corresponds 
to index of fault type, but the values represent the level of 
fault.  

 
Training Algorithm 

The commonly used algorithm for training of feed-
forward artificial networks is variants of back-propagation  

 
 
 
 
 
 
 
 
 

Fig. 3: Two common node functions used in network layers. 
 
technique. It is basically an optimization algorithm in 
which the independent variables (decision variables) are 
the weights and biases of neural network structure. The 
objective function is sum of squared deviations of target 
values from calculated network output, which has to be 
minimized. In other words, the training algorithm 
minimizes the distances of desired and predicted values 
(fault patterns) of network.  

For better training and handle the numerical issues, it 
is common to do some regularization or normalization 
procedures in prior to training. The regularization type is 
case dependent, especially depends on the type of node 
functions used in the early net layers. For instance, if we 
have selected the function tansig (Fig. 3) for all the nodes 
in the first layer, it is better to maintain the normalized 
inputs in the range of –1 (minus one) to +1. However, if 
the function logsig is selected, it would better to choose 
the range of 0 (zero) to +1. We have used the latter 
function as described later for the case study. 
 
The Matching Algorithm  

As mentioned previously, the network input vector 
has included the output pattern. Due to this implicit 
relation, we should make the patterns consistent in some 
way. For this reason, we have used some type of direct 
search method to minimize the distinction of input 
elements and output vector and also avoiding iteration 
and the need for initial values. The details of recall 
algorithm are as follow: 

Step 1 - Supply the network inputs by measuring the 
plant outputs and the first fault pattern. 

Step 2 - Recall the network and obtain the fault 
pattern, generated by the network. 

Step 3 - compare the assumed pattern , considered in 
the input vector with the detected fault pattern by 
defining an error norm. 
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Step 4 - Take the second fault pattern and repeat the 
above steps until all the patterns have been processed. 

Step 5 - Search for the least element in the error norm 
vector. Find the index of the least element and report the 
corresponding fault. 

 
Simulation of Faults in a Reactor 

To evaluate the performance of the proposed scheme, 
we selected a typical unit, which is frequently used in the 
open literatures [3,4]. 

The schematic diagram of the simulated process unit is 
depicted in Fig. 4. As it is shown the reactor feed consists 
of heptane, which is delivered via a process pump. The 
following catalytic and endothermic reaction takes place 
in the reactor: 287167 H4HCHC +→  . 

The temperature of reactor is controlled via a PI 
(Proportional-Integral) controller. The operation is carried 
out as described below. The live steam is passed through 
a heater and is fed into the jacket of reactor. The effluent 
of jacket is circulated back to the heater. The controller 
(regulator) receives the reactor temperature (supplied by 
sensor) and compares it with set-point value and provides 
the proper command signal to manipulate the heat input 
to the exchanger.  

If we denote the output concentration of reactants 
C7H16, C7H8, H2 by C10, C2, C3, respectively and input 
concentration of heptane by Cli, then the following 
equations result from component mass balance around the 
reactor: 
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The reaction rate constant is related to temperature as 
given below: 

RT/E aekk −= o  

If ∆H is the energy of reaction, a and h, the surface and 
overall heat transfer coefficient, then the energy balance 
around the reactor yields: 
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where Ti and T are the feed and product temperature and 
Th is the outlet temperature of vapor from the heat 
exchanger. The set-point value (uc) of 740 mV is chosen 
for simulation. The gain of measuring device is 

1K T/mV = and hence the feedback error signal is: 

TKue T/mVc −=                                                           (8) 

If the integrator output is denoted by si and controller 
output by sh, then the dynamic relation of controller is 
given by: 
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By writing the energy balance around the heat 
exchanger, we have: 
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The rest of system parameters are given in Table 1. 
It is assumed that no fault occurs in the controller and 

just five faults with different four levels of change may 
occur.  

Fault 1: reduction in catalyst activity. 
Fault 2: fault in reactor heat exchanger. 
Fault 3: fault in heater. 
Fault 4: reduction in feed flow rate. 
Fault 5: reduction in circulation rate.  

The steady-state values (normal condition) have been 
presented in Table 2. Results of simulation have been 
presented in Table 3. and Table 4., using the normalized 
variables. Schematic structure of the proposed neural 
network for the simulated reactor has been shown in Fig.5. 
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Table 1: Parameters used in simulation studies. 
 

Reaction rate constant, ko 5.01×108 h-1 

Energy of activation,  Ea 1.369×105 J/mol 

Specific heat, Cp 490.7 J/mol.oK 

Density, ρ 593 mol/m3 

Heat transfer area, a 10 m2 

Overall heat transfer coefficient, h 6.05×105 J/m2h oK 

Heat of reaction, ∆H 
2.2026×105+6.2044×10 T- 

5.536×10-2 T2 - 1.15×10-6 T3 + 
3.1496×10-7 T 4 J / mol 

Reactor volume, V 30 m3 

Heater time constant, ιI 0.2 h 

Heater gain, k 1 oK / mV 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4: The schematic diagram of the simulated process. 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5: The proposed neural network fault detector. 

Table 2: Steady-state values or normal condition. 
 

Reactor temperature, T 740 oK 

Inlet concentration of C7H16 , C1i 1000 mol / m3 

Outlet concentration of C7H16 , C10 476 mol / m3 

Outlet concentration of C7H8 , C2 524 mol / m3 

Outlet concentration of H2 , C3 2097 mol / m3 

Heater temperature, Th 889 oK 

Feed temperature, Ti 300 oK 

Inlet temperature of heater,CT 0.9×740 °K 

Feed and product Flow rate, q 3m3/ h 

 
 
Table 3: Single faults in a reactor by input-like regularization. 

 

Number/Level 
Control 

command 
Heater 

temperature 
Concentration 

1/1 0.9807 0.9952 0.9498 

1/2 0.9703 0.9925 0.9225 

1/3 0.9592 0.9898 0.8937 

1/4 0.9474 0.9868 0.8631 

2/1 1.0743 1.0186 1.0000 

2/2 1.1180 1.0296 1.0000 

2/3 1.1671 1.0419 1.0000 

2/4 1.2228 1.0559 1.0000 

3/1 0.9504 0.9876 1.0500 

3/2 0.9248 0.9811 1.0769 

3/3 0.8986 0.9746 1.1052 

3/4 0.8718 0.9678 1.1350 

4/1 1.1111 1.0000 1.0000 

4/2 1.1765 1.0000 1.0000 

4/3 1.2500 1.0000 1.0000 

4/4 1.3333 1.0000 1.0000 

5/1 0.9000 1.0000 1.0000 

5/2 0.8500 1.0000 1.0000 

5/3 0.8000 1.0000 1.0000 

5/4 0.7500 1.0000 1.0000 

Normal 1.0000 1.0000 1.0000 

Sh 

Th 
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Fig. 6: The training error convergence of single faults. 

 
The network consists of three layers with input layer 

of dimension 8, hidden layer with 8 nodes and output 
layer with dimension 5 (faults), respectively. The transfer 
functions used for  both  hidden  and  output  layers  were 
selected as log sigmoid function. The number of nodes 
and layers has been obtained by trial and error, leading 8 
nodes for hidden layer and 5 nodes for output layer. 

 
Training Patterns 

The process model has been used to produce the 
training data by simulation. Every cycle of training 
includes the pairs of input-output patterns, like the 
records depicted in Table 3 and 4.  

The output pattern corresponds to index of fault type, 
and the values represent the level of fault. For instance, 
consider the first row of entries in Table 4. This record 
has been introduced to the artificial neural net classifier 
by input in the form of  [0.9807, 0.9952, 0.9498, 0.9, 1, 1, 
1, 1] and output in the form of [0.9, 1, 1, 1, 1].  

The first three elements of input vector are the 
normalized quantities of measured variables (the control 
command, temperature of heater outflow and concen-
tration of toluene) which supply the arguments and 
characterization of fault(s).  

The elements of output vector demonstrate the fault 
type and its level. For a typical record like this, the first 
element is not 1 (one), but the others are 1 (one); so, it 
means the 1st fault (fault no. 1) has occurred and 
additionally the fault has happened in level 1, because the 
value is 0.9 or 90% of normalized variable span. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7: The training error convergence of dual faults. 

 
Training Algorithm  

The algorithm minimizes the distances of desired  and 
functional values (fault patterns) of the network. The 
training set should globally covers the variables span. 
Hence for single fault detection we need at least 21 
training records, while for two-fault detection we need at 
least 200 plus 21 (i.e. 221) records. Further, to improve 
the interpolation capability of network, we can inject 
some noisy records into the trainig set. In Figures 6. and 
7, the convergence of training objective function have 
been shown. In Fig. 6 (single faults) the error tolerance is 
1e-15 and in the Fig. 7 , it is 1e-6. It is worth-mentioning 
that if we use the networks as presented in literature [10], 
consisting the 3 input and 5 output, the tolerance would 
be greater than 0.01. The reduction of error about 1e13 
order of magnitude indicates the superiority of the 
proposed structure (with feedback of fault pattern) over 
the classical ones.  

 
SIMULATION  RESULTS 

The results of simulation for both single-fault and 
dual-fault are given in Tables 5. to 8. The procedure is 
described as follows. First, the performance of plant has 
been simulated for a typical deviation of parameters (i.e. 
produing synthetic fault ) to get the corresponding 
measured variables. Afterwards, a level of noise with 
zero mean and specified variance has been added to (soft) 
measurements. The level of noise for three measured 
variables are given below: control command by 7.3%, 
heater outflow temperature  by  4.5 %  and  reactor  outlet  
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Table 4: Levels of single faults (Table 3) and their patterns. 
 

Number/Level Cause Fault pattern 

1/1 0.90 0k  [0.90,1,1,1,1] 

1/2 0.85 0k  [0.85,1,1,1,1] 

1/3 0.80 0k  [0.80,1,1,1,1] 

1/4 0.75 0k  [0.75,1,1,1,1] 

2/1 0.90 h  [1,0.90,1,1,1] 

2/2 0.85 h  [1,0.85,1,1,1] 

2/3 0.80 h  [1,0.80,1,1,1] 

2/4 0.75 h  [1,0.75,1,1,1] 

3 /1 0.90 h′  [1,1,0.90,1,1] 

3/2 0.85 h′  [1,1,0.85,1,1] 

3/3 0.80 h′  [1,1,0.80,1,1] 

3/4 0.75 h′  [1,1,0.75,1,1] 

4/1 0.90 q  [1,1,1,0.90,1] 

4/2 0.85 q  [1,1,1,0.85,1] 

4/3 0.80 q  [1,1,1,0.80,1] 

4/4 0.75 q  [1,1,1,0.75,1] 

5/1 0.90 q′  [1,1,1,1,0.90] 

5/2 0.85 q′  [1,1,1,1,0.85] 

5/3 0.80 q′  [1,1,1,1,0.80] 

5/4 0.75 q′  [1,1,1,1,0.75] 

Normal qqhhk ′′ ,,,,0  [1,1,1,1,1] 

 
Table 5: the simulated inputs for single fault detection. 

 

Number/Level 
Control 

command 
Heater 

temperature 
concentration 

1 / 1 0.9375 0.9951 0.9456 

1 / 2 0.9825 0.9954 0.9213 

2 / 3 1.1599 1.0453 1.0026 

2 / 4 1.2137 1.0530 1.0021 

3 / 1 0.9537 0.9863 1.0515 

4 / 2 1.1644 0.9969 1.0017 

5 / 3 0.8057 0.9998 1.0011 

 Normal 1.0102 0.9966 0.9924 

Table 6: The result of fault detection for single faults. 

 Node number 

Number/Level 1 2 3 4 5 

1 / 1 0.8999 1 1 1 1 

1 / 2 0.8585 1 1 1 1 

2 / 3 1 0.7845 1 1 1 

2 / 4 1 0.7303 1 1 1 

3 / 1 1 1 0.9272 1 1 

4 / 2 1 1 1 0.8563 1 

5 / 3 1 1 1 1 0.8211 

Normal 1 1 1 1 1 
 

Table 7: the simulated inputs for dual fault detection. 
 

Number/Level 
Control 

command 
Heater 

temperature 
concentration 

1 / 1 0.9699 0.9928 0.9523 

2 / 2 1.1295 1.0304 1.0093 

3 / 3 0.8882 0.9702 1.1104 

4 / 4 1.3401 1.0013 1.0047 

1 / 1 & 3 / 2 0.8994 0.9768 1.0365 

1 / 4 & 4 / 1 1.0578 0.9886 0.8622 

1 / 2 & 2 / 1 1.0386 1.0121 0.9222 

 
Table 8:  The result of fault detection for dual faults. 

 
Node number 

Number/Level 1 2 3 4 5 

1 / 1 0.8767 0.9999 1 1 0.9991 

2 / 2 0.9898 0.8504 1 1 0.9998 

3 / 3 1 1 0.8255 1 0.9994 

4 / 4 1 1 1 0.7516 0.9998 

1 / 1 & 3 / 2 1 1 0.8470 1 0.9981 

1 / 4 & 4 / 1 0.7563 1 1 0.8930 0.9998 

1 / 2 & 2 / 1 0.8766 0.9062 1 1 0.9998 
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concentration by 2.6%. The matching algorithm is des-
cribed typically for  the  single  fault  detection. Consider 
the first record of  Table 5. The data is noisy and the level 
of the fault is near the the normal situation.  

To consider the power of detection, we recall the 
trained network by training set of single faults. In 
matching phase, the first three elements of steady-state 
data (i.e., 0.9375, 0.9951, 0.9456) are coupled by fault 
patterns to establish the input of ANN for detecting or 
browsing the fault pattern. For instance, assume that the 
first patter in database is  the normal situation or [1,1,1, 
1,1]. For the first trial, we prepare the input as [0.9375, 
0.9951, 0.9456, 1,1,1,1,1] and then recall the network. 
The obtained pattern is matched (compared with) against 
estimated pattern via making an error norm. This process 
is done for whole records of the database. Finally the 
error norms are sorted in a vector and the least element is 
selected and the corresponding fault is reported. 

The results for typical fault 1/1 (first entry of Table 5) 
are shown in Table 6. As it is clear the single fault 
detector has detected the fault and its level successfully, 
by realizing the least error norm. The simulation run is 
again repeated but the database consist both single and 
dual fault records. In other words the detector net used in 
this run has been trained by 221 records (sum of single 
and dual fault patterns).  The simulated typical inputs are 
depicted in Table 7., and  its results are shown in Table 8. 

The detector reports all the faults correctly except for 
the ones when the level  is close to normal situation (for 
example, see the result for faults 1/1 & 3.2). This point 
confirms the point that the presense of noise may 
deteriorate the detection process  

 
CONCLUSION 

In this article the problem of incipient and also dual 
faults detection using neural networks was studied and 
evaluated. A new  structure for the neural network was 
proposed. The main novelty embedded in the architecture 
is using the fault patterns in the input space of the net 
during the recalling or detection of faults. The 
performance of the scheme was examined through a 
typical reactor model. The results revealed the superior 
performance of the proposed scheme over the convetional 
schemes. It should be mentioned that this improvement is 
obtained at the expense of more computational efforts. In 
the future work the scheme will be extended to more than 

two simultaneous faults and examined for various 
sturucture of networks, both number of nodes and number 
of layers to detect the faults more precisely. 
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