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ABSTRACT: Greenhouse gases can be defined as air pollutants that cause global climate warming. 

In order to reduce their harmful effects, these gases like methane and carbon dioxide can be stored 

in the form of compact gas hydrates. Prediction of gas hydrate formation conditions is very important 

for gas hydrate production and storage in industries. The goal of this study is to develop machine 

learning methods based on support vector regression and adaptive boosting models for predicting 

gas hydrate formation conditions for CO2 and natural gas. In this regard, SVR, AdaBoost.R2, VQ-SVR, 

VQ-AdaBoost.R2, CS-VQ-SVR, and CS-VQ-AdaBoost.R2 models have been developed and compared 

to obtain a model with the best performance. The cuckoo search optimization algorithm and vector 

quantization technique have also been utilized to determine the optimal values of the models’ hyper-

parameters, reduce the computation time, and improve the accuracy and robustness of the models. 

As a result, since the values of the coefficient of determination and root mean square error  

for the CS-VQ-SVR model are 0.0215 and 0.9995, respectively, and the best agreement between predicted 

and actual values in this model’s graphs is obtained, it can be concluded that the CS-VQ-SVR model has 

the best accuracy and robustness among other developed models in predicting gas hydrate formation 

pressure with time. These results show that machine learning is viable for predicting the conditions of gas 

hydrate formation and preventing greenhouse gas emissions in industries. 

 

KEYWORDS:  Gas hydrate formation; Greenhouse emissions; Air pollution; Machine learning; 

Data-driven models. 

 

 

INTRODUCTION 

Global warming, defined as the continuous rise in the 

average temperature of Earth’s climate system, causes 
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extreme droughts, wildfires, floods, and tropical storms. 

The emission of greenhouse gases and subsequently 
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increasing their level in the environment is the principal 

contributor to the change of climate and global warming 

problems [1]. Reducing greenhouse gas emissions is one 

of the most critical issues in coping with global warming 

in the Paris Agreement. Consequently, emission control 

and the quality of output products in the process units are 

very crucial. The quality control of the output products is 

usually done by time and money-consuming lab technics 

or expensive online analyzers. These approaches are not 

only expensive but also cause a lot of problems for the 

process units due to their breakdown.  Considering the 

daily high amounts of generated and saved data in oil and 

gas industries, we have this opportunity to benefit from 

artificial intelligence and data-driven models to design and 

develop a soft sensor alongside Industry 4.0 and the age of 

digital transformation. This can be an alternative/parallel 

for a real analyzer to operate more efficiently in the unit.  

Two of the most important greenhouse gases are 

carbon dioxide and methane. These gases can be stored  

in the form of ice-like compounds known as gas hydrates 

in order to control their emission and prevent their harmful 

effects. Gas hydrates are composed of water and a certain 

number of natural gas molecules under favorable conditions  

of pressure and temperature. The guest molecules are enclosed 

in host molecules’ cavities that are composed of hydrogen 

bonding in water. Typical natural gas molecules that can form 

gas hydrate include CH4, C2H6, C3H8, and CO2 [2]. 

There are some methods for prediction of gas hydrate 

formation conditions such as experimental based methods [3-5], 

but the problem with these methods is that they are time 

consuming and expensive. 

In this regard, alternative methods such as data-driven 

models can be used. Data-driven modeling is a technique 

that makes strategic decisions based on data analysis and 

interpretation without explicit knowledge of the physical 

behavior of a system. Machine learning techniques [6-9] 

are one of the main groups of data-driven approaches. 

There are a large number of these techniques, two of which 

are Support Vector Machines (SVM) [10-13] and 

committee machines [14-16]. 

A committee machine generates an ensemble of 

predictors and combines the prediction of each committee 

member to predict the overall prediction for a new input [17]. 

Committee machines combine estimators so that the 

general performance improves compared to the 

performance of each single estimator [18]. One of the most 

popular committee machine methods is boosting [19]. 

Boosting algorithms are available in different versions for 

classification and regression problems. AdaBoost [20], 

short for adaptive boosting, is a boosting algorithm that was 

extended by Freund and Schapire [21] for regression problems 

under the name AdaBoost.R [17]. Then Ducker [22] 

introduced a modification version of AdaBoost.R called 

AdaBoost.R2 algorithm. D.L. Shrestha and D.P. 

Solomatine [17] introduced a new boosting algorithm 

called AdaBoost.RT with a view to solve regression 

problems. In this algorithm, examples which have higher 

estimation error than the preset threshold value are filtered 

out. As a result, this algorithm has higher performance than 

other boosting methods, bagging, artificial neural 

networks, and a single M5 model tree. S. Patil, A. Patil, 

and V. Phalle [23] used AdaBoost regressor to predict the 

Remaining Useful Life (RLU) of rolling element bearing 

and found that their proposed model has better results than 

other data-driven methods from the literature.  

In recent years, a new learning method called SVM 

developed by Vapnik [24] has become an important topic 

in machine learning and competed with other methods 

such as neural networks and decision trees. SVM is a 

promising technique for both classification and regression 

problems [25]. The SVM method for regression problems is 

called the Support Vector Regression (SVR) method [26,27]. 

The basic idea behind SVR is to find the best hyper plane 

as a decision function in high-dimensional space [28].  

Hyper-parameter optimization, the problem of 

choosing a set of optimal hyper-parameters for a learning 

algorithm, helps a machine learning model to optimally 

solve a problem. One of the most common methods 

determining optimal values of hyper-parameters is the 

Grid Search Method (GSM) [28]. In some research, GSM 

has been adopted to optimize hyper-parameters of 

AdaBoost regression and SVR models [29, 30]. However, 

GSM is time-consuming and computationally expensive 

because it searches over the whole hyper-parameter space. 

Due to these shortcomings, X.S. Yang and S. Deb [31] 

proposed a meta-heuristic algorithm for optimization 

called the Cuckoo Search (CS) algorithm [32, 33]. CS 

algorithm has some advantages such as strong and global 

search with fewer parameters, having a good search path, 

and solving multi-objective problems powerfully [34].  

Y. Dong, Z. Zhang, and W.-C. Hong [35] used SVR model 

with a seasonal mechanism to forecast electric load with 
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improved CS algorithm called chaotic cuckoo search. 

Their proposed model obtains better results than other 

alternative models.  

Since there are large datasets available in process 

industries, processing the data with high-speed and 

extensive memory capacities is an important issue. The 

Vector Quantization (VQ) technique [36,37] compresses 

the data with the aim of solving this problem and reduces 

the training time for selecting optimal parameters in  

a robust system [28].   

In recent years there are some research which have 

used data-driven models to predict hydrate formation 

condition. Tan et al. [38] built a mechanism-based data-

driven modeling method to predict hydrate formation. 

Based on the collected data, including temperature, 

pressure and components, a data-driven method was 

introduced to identify the unknown parameters in the 

mechanism model. Four different component systems 

were calculated using the mechanism model, empirical 

model and data-driven mechanism model for comparison. 

Results show that the average error of the data-driven 

model is as low as 0.0085 MPa, and this method can 

overcome the irrationality of prediction caused by only 

using historical data or mathematical formulas. 

 Yu et al. [39] employed machine learning to predict the 

formation condition of natural gas hydrates to overcome 

the high computation cost and low accuracy. Three data-

driven models, Random Forest, Naive Bayes, and Support 

Vector Regression (SVR) were tentatively used to 

determine the formation condition of hydrate formed by 

pure and mixed gases. The comparison of results predicted 

by Chen–Guo model and machine learning models with 

the experimental data indicated that the Random Forest 

model performed better than the Naive Bayes and SVR 

models on both computation speed and accuracy.  

Monday and Odutola [40] developed machine learning 

models after a kinetic inhibitor to predict the gas hydrate 

formation and pressure changes within the natural gas flow 

line. Green hydrate inhibitors A, B, and C were obtained 

as plant extracts and applied in low dosages (0.01 wt.% to 

0.1 wt.%) on a 12-meter skid-mounted hydrate closed flow 

loop. From the data generated, the optimal dosages of 

inhibitors A, B, and C were observed to be 0.02 wt.%, 0.06 

wt.%, and 0.1 wt.% respectively. The data associated with 

these optimal dosages were fed to a set of supervised 

machine learning algorithms (Extreme gradient boost, 

Gradient boost regressor and Linear regressor) and a deep 

learning algorithm (Artificial Neural Network). The output 

results from the set of supervised learning algorithms and 

Deep Learning algorithms were compared in terms of their 

accuracies in predicting the hydrate formation and the 

pressure within the natural gas flow line. All models had 

accuracies greater than 90%.  

Sadi et al. [41] developed two artificial intelligence 

models based on an adaptive neuro-fuzzy inference system 

(ANFIS) and a support vector machine (SVM) technique 

to predict the desalination efficiency of produced water 

through a hydrate-based desalination treatment process.  

A genetic algorithm as an evolutionary optimization 

method has been used to determine the optimal values  

of SVM model coefficients. For the ANFIS model,  

the coefficient of determination (R2) and average absolute 

relative error (AARE) are 0.9927 and 0.58%, respectively. 

The values of AARE and R2 for the SVM model are 

obtained at 0.35% and 0.9985, respectively.  

Hosseini and Leonenko [42] proposed machine 

learning-based models to predict methane-hydrate 

formation temperature for a wide range of brines. The 

results showed that the extremely randomized trees are 

capable of predicting methane-hydrate formation 

temperature with good accuracy.  

Xu et al. [43] compared five machine-learning to 

develop prediction tools for the estimation of 

methane hydrate formation temperature in the presence of 

salt water. These machine learning algorithms were 

Multiple Linear Regression, k-Nearest Neighbor, Support 

Vector Regression, Random Forest, and Gradient Boosting 

Regression. The experimental data span salt 

concentrations up to 29.2 wt% and pressures up to 200 

MPa. Among these five machine learning methods, 

Gradient Boosting Regression gave the best prediction 

with R2=0.998 and AARD = 0.074%.  

Ibrahim et al. [44] investigated the applicability of 

radial basis function networks and support vector 

machines to predict hydrate formation conditions. Data-

based models enable the oil industry to predict the 

conditions leading to hydrate formation hence preventing 

clogging of the pipeline and high-pressure buildup that 

could lead to sudden bursts at the connections.  

Kumari et al. [45] discussed the least square support 

vector machine and artificial neural network models for 

the prediction of stability conditions of gas hydrates and 

https://www.sciencedirect.com/topics/engineering/machine-learning-algorithm
https://www.sciencedirect.com/topics/engineering/hydrate-formation-temperature
https://www.sciencedirect.com/topics/engineering/machine-learning-algorithm
https://www.sciencedirect.com/topics/engineering/machine-learning-method
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the use of Genetic Programming (GP) and Genetic 

Algorithm (GA) to develop a generalized correlation for 

predicting equilibrium conditions of gas hydrates. 

As can be seen, almost all data driven models have 

been used to predict hydrate thermodynamic condition. 

Based on our information, no data driven model have used 

to predict hydrate formation kinetics i.e. prediction of 

pressure change with time.  

In this paper, in order to predict CO2 and natural gas 

hydrate formation pressure with time, different 

combinations of SVR and AdaBoost.R2 models with CS 

algorithm and VQ technique have been developed for the 

first time. The developed models are SVR, AdaBoost.R2, 

VQ-SVR, VQ-AdaBoost.R2, CS-VQ-SVR, and CS-VQ-

AdaBoost.R2. Then, results have been compared with each 

other to find the most reliable and robust model among 

others. This machine learning approach can be used to 

predict the conditions of gas hydrate formation, and it has 

application in industries to produce gas hydrates for 

sequestration of greenhouse gasses. 

 

METHODOLOGY  

Adaptive boosting regression  

Adaptive Boosting (AdaBoost) algorithm is a supervised 

learning algorithm and the most widely used form of boosting 

algorithms which combines multiple weak learners into a 

single strong learner. In AdaBoost algorithm each one of the 

weak learners is a model slightly better than random guessing, 

such as a decision tree. AdaBoost can be used for both 

classification and regression problems. In the present study, 

AdaBoost.R2 which is one of the boosting algorithms for 

regression problems has been used, same as Ducker [22]. In 

AdaBoost.R2, final prediction is a weighted average of 

predictions given by each weak learner and the functioning of 

the algorithm is such that the information from previous weak 

learner is fed to the next one so that the error of previous 

learner improves [23] and the performance of a particular 

weak learner depends on the previous one [22]. The first weak 

learner is trained using equal weighting coefficients, and in 

subsequent boosting rounds these weighting coefficients will 

be updated. The weights of poorly predicted examples 

increase and the weights of well-predicted ones decrease [17]. 

There are three hyper parameters for AdaBoost.R2 algorithm. 

The first one is base estimator from which the boosted 

ensemble is built, and its default estimator is decision tree 

with maximum depth as three. The second one is number of 

estimators which is the maximum number of estimators at 

which boosting is terminated. The last one is learning rate 

which is a weight applied to each weak learner at each 

boosting iteration. A higher learning rate increases the 

contribution of each base learner. In this paper, base estimator 

has been tuned to its default value, and the number of 

estimators and the learning rate has been tuned by using 

cuckoo search optimization algorithm. 

 

Support Vector Regression (SVR) 

SVR is one of the most flexible and robust algorithms 

for regression problems, which falls under the supervised 

machine learning models category. SVR allows us to model 

non-linear relationships between variables. Different loss 

functions can be used in SVR, the most common of which 

is robust 𝜀-insensitive loss function (Lε) [28]: 

Lε(f(x)-y)= {
|f(x)-y|-ε      for |f(x)-y|≥ε

0                                           otherwise
       (1) 

Where 𝜀 is a tunable parameter and it determines the width 

of a tube around the estimated function (hyper plane).  

The main goal of SVR is to find an optimal hyper plane 

which reduces the total deviation of all data points to less 

than or equal to epsilon by putting more data points inside 

the tube and reducing slack variables. slack variables, ξ 

and ξ∗, measure the distance from training data values 

outside the tube and edge values of 𝜀 -tube, and they can 

be tuned by regularization parameter C. C is a penalty of 

misclassifying a data point. As C increases, algorithm puts 

more points inside the 𝜀 -tube and try to minimize slack 

variables as much as possible. Therefore, the data can be fitted 

better. However, it makes our model less robust to 

outliners, so the risk of over fitting can be increased.  

The objective function which should be minimized in 

SVR algorithm can be formulated as follows: 

𝑀𝑖𝑛 
1

2
‖𝑤‖2 + 𝐶 ∑(𝜉𝑖

− +  𝜉𝑖
+)

𝑙

𝑖=1

                                        (2) 

With the following constraints: 

𝑦 = {

𝑦𝑖 − (〈𝑤, 𝑥𝑖〉 + 𝑏) ≤ 𝜀 + 𝜉𝑖

(〈𝑤, 𝑥𝑖〉 + 𝑏) − 𝑦𝑖  ≤ 𝜀 + 𝜉𝑖
∗

𝜉𝑖 , 𝜉𝑖
∗  ≥ 0                                 

                                   (3) 

SVR algorithm can deal with non-linear problems with 

the use of kernel trick. A kernel is a function which 

maps a non-linear dataset from original space into a 

higher dimensional feature space, then constructs a linear 
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Table 1: CS algorithm parameters 

Variable Value 

Initial population size 50 

Maximum generation 100 

𝜶 0.01 

𝒑𝒂 0.25 

𝜷 1.5 

 

regression function there. There are different kernel 

functions such as linear kernel, polynomial kernel, 

sigmoid kernel, and Gaussian (radial basis function, RBF) 

kernel. Since the Gaussian kernel has high accuracy and 

good generalization ability [46], it has been used in this 

study. The Gaussian kernel equation is as follows: 

𝐾(𝑥, 𝑥 ′) = exp (−
‖𝑥 − 𝑥 ′‖2

2𝜎2
)                                         (4) 

Where gamma, 𝜎, is a hyper-parameter for determining 

how much curvature a decision boundary should have. 

In the present study, the tube size,  𝜀 , the regularization 

parameter, C, and the parameter of the RBF kernel, 𝜎, have 

been specified by using cuckoo search optimization algorithm.  

 

Cuckoo Search (CS) algorithm 

Cuckoo Search (CS) inspired by the reproduction 

strategy of cuckoo birds is a meta-heuristic algorithm. 

Similar to other evolutionary algorithms, CS begins with 

primary population of cuckoos. These cuckoos lay their 

eggs in the nests of other host birds. The host birds can 

realize that the eggs do not belong to them and either throw 

them out or abandon the whole nest to build another nest in 

a new location. However, if the eggs are not recognized by 

host birds, they can grow up and become mature birds. the 

term which CS algorithm want to optimize is the position 

in which more eggs survive. Cuckoo birds constantly lay 

new eggs and choose a nest around the current best 

position by Lévy flight behaviors. This process continues 

until the best position which maximize the eggs survival 

rate is found, and most of the cuckoo population are 

gathered there. There are three rules for CS algorithm used 

by X.S. Yang and S. Deb [30]: (1) each cuckoo lays one 

egg at a time in a random nest of a host bird; (2) eggs with 

the best quality would transfer to the next generation; (3) 

the number of nests are fixed, and the host bird can detect 

the stranger egg with a probability 𝑝𝑎 ∈ [0,1] . In this case 

the host bird can either remove it or abandon the whole 

nest to build a new nest in a new location.  

Based on these three rules, the steps of the CS 

algorithm via Lévy flight algorithm is presented by Zheng 

and Zhou [47]. 

In CS algorithm the new position of cuckoo 𝑖 is created 

as follows:  

𝑛𝑒𝑠𝑡𝑖
𝑡+1 = 𝑛𝑒𝑠𝑡𝑖

𝑡 + 𝛼 ⨁ 𝑙é𝑣𝑦(𝛽)                                      (5) 

Where alpha, > 0 , is the size of each step and 𝛽, 

(0 < 𝛽 ≤ 2), is a constant value given as an input to Lévy 

flights function. The product ⨁ means entry-wise 

multiplication. Lévy flights provide a random walk with 

random steps drawn from a Lévy distribution for large 

steps as follows [47]: 

𝐿é𝑣𝑦 ~ 𝑢 = 𝑡−1−𝛽                                                                 (6) 

The CS algorithm parameters, which have been applied 

in this paper to optimize hyper-parameters of 

AdaBoost.R2 and SVR models, are shown in Table 1. 

 

Vector quantization (VQ) 

VQ is an efficient technique for data compression, and 

it is based on the principle of block coding. In this 

technique, each training data is mapped to a vector called 

code vector. This vector is a list of numbers, and the 

number of input and output attributes in it is as same as the 

training set. In the algorithm of this technique, an initial 

codebook which is a finite set of code vectors is needed. 

The initial codebook can be generated using randomly 

selected instances from the training set or randomly 

generated vectors with the same scale as the training data. 

This algorithm executes in some iterations. In each 

iteration, the most similar code vector is selected from  

the code book for each instance in the training dataset.  

The goal of the algorithm is to find code vectors so that 

 the average pairwise distance between the training vectors 

and their corresponding code vectors is minimized [48]. 

As a result, we can conclude that VQ technique 

comprises of three stages: codebook generation, vector 

encoding and vector decoding. It quantizes and simplifies  

a large dataset, so the time for choosing optimal parameters 

and the training time reduce; moreover, the prediction 

accuracy and robustness of the system increase [28]. 

 

EXPERIMENTAL SECTION 

The experimental setup used in this research has been 

shown in Figure 1 which its main part is hydrate reactor 

with a volume of approximately 300 cm3. A cooling  

https://ieeexplore.ieee.org/author/38104337900
https://ieeexplore.ieee.org/author/37648933300
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Table 2: Sample of experimental data for variation of pressure 

and temperature with time during natural gas hydrate formation 

Time (min) Temperature (k) Pressure (psi) 

0 276.2 1400 

60 276.2 1380 

120 276.2 1355 

. . . 

. . . 

. . . 

360 276.8 920 

. . . 

. . . 

. . . 

540 276.7 750 

. . . 

. . . 

. . . 

1800 276.4 580 

 

 
Fig. 1: Schematic of the experimental set-up 

 

medium circulatory system is used to control the 

temperature, a gas cylinder to inject the gas and a mixer to 

mix the contents of the hydrate reactor. A pressure 

transducer with the scale of 0.5 psi (accuracy 

approximately 0.5%) and a thermocouple with the scale of 

0.1ºK (accuracy approximately 0.4%) are used to measure 

the pressure and temperature and there was a data 

collection to record them during the process.  A computer 

system with the suitable data acquisition software is used 

to record and collect experimental data during the time. 

The reactor is washed and rinsed with de-ionized water 

and then 75 cm3 water is charged into the reactor for each 

experiment. The reactor is purged with natural gas and two 

different hydrate formers (CO2 and natural gas) are used  

to form hydrate. The reactor is pressurized with hydrate 

former to 1400 psia at 298.2 K. After reaching equilibrium 

at the initial temperature and pressure, the system is cooled 

to the hydrate formation temperature (276.2 K). The mixer 

is then started at a rate of 200 rpm to initiate hydrate 

formation. The temperature and pressure changes are 

recorded during hydrate formation in each 10 second and 

saved in an excel file. A set of data was shown in table 2 as 

a sample data for variation of pressure and temperature with 

time during natural gas hydrate formation. Due to the large 

number of points, data have been shown every 60 minutes. 

 

MODEL DEVELOPMENT 

In this research, models have been developed using 

Python 3.7.9 programming language, Jupyter Notebook 

environment, and the scikit-learn library. Experiments 

have been done on windows 10, processor core i7 and 

RAM 8 GB to obtain high accuracy and performance. 

The SVR, AdaBoost.R2, VQ-SVR, VQ-AdaBoost.R2, 

CS-VQ-SVR and CS-VQ-AdaBoost.R2 models have been 

developed for predicting the gas hydrate formation 

condition and compared to each other. In order to evaluate 

the performance of these developed models, a data set with 

12017 data has been selected. The hydrate formation time, 

temperature, and types of gases have been selected as 

models’ inputs to determine hydrate formation pressure 

with time as a target value. 

The strategy used to develop each one of the models in 

the present study has been presented in Figure 2, and 

according to that, the main steps of model development are 

as follows: 

Step 1: Selecting the train and test datasets; Selecting 9404 

samples as training data and 2613 samples as testing data 

randomly from the original dataset. 

Step 2: Data compression: Using VQ technique to change 

the dataset to a low-dimensional and dense one so that the 

training and computation time reduce.   

Step 3: Performing hyper-parameter optimization: 

Determining the tube size,  𝜀 , the regularization 

parameter, C, and the parameter of the RBF kernel, 𝜎, in 

SVR model as well as base estimator and number of 

estimators in AdaBoost.R2 model using CS optimization 

algorithm. 

Step 4: Training the model: Using training samples and 

optimized hyper-parameters to train the model before 

prediction. 

Step 5: Model prediction and validation: Using testing 

samples as inputs of the model to obtain the predictive 

values and validate the model. 
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Fig. 2: The procedure of model development 

 

RESULTS AND DISCUSSION  

In this research, in order to evaluate and compare the 

models’ performance, graphical representations and statistical 

analysis methods have been employed. Cross plots and 

graphs with experimental data have been used as graphical 

representations and Root Mean Square Error (RMSE) and 

coefficient of determination (𝑅2) have been utilized as 

statistical analysis. The statistical parameters are as follows: 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦 ̅)2𝑛
𝑖=1

                                                    (7) 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑖 −  𝑦𝑖̂)2𝑛

𝑖=1

𝑛
                                               (8) 

Where 𝑦̂, 𝑦, 𝑦̅ and n are values predicted by the model, 

experimental data, a mean value of experimental data and 

number of data points, respectively.  

Table 2 lists the values of statistical parameters for 

SVR, AdaBoost.R2, VQ-SVR, VQ-AdaBoost.R2, CS-

VQ-SVR and CS-VQ-AdaBoost.R2 models. According to 

this table, the following assumptions can be made: 

1) CS-VQ-SVR model has the best performance, and the 

AdaBoost.R2 model has the worst performance 

among other models. 

2) The VQ technique improves the performance and 

accuracy of SVR and AdaBoost.R2 models. It also 

reduces computational time.  

Table 3: Statistical criteria for developed models 

Model Train data Test data 

 RMSE R2 RMSE R2 

SVR 0.3151 0.9006 0.3518 0.8762 

AdaBoost.R2 0.3511 0.8767 0.4033 0.8373 

VQ-SVR 0.0949 0.9909 0.0988 0.9902 

VQ-AdaBoost.R2 0.0386 0.9613 0.0351 0.9648 

CS-VQ-SVR 0.0001 0.9999 0.0215 0.9995 

CS-VQ-AdaBoost.R2 0.1435 0.9600 0.1899 0.9639 

 

 
Fig. 3: Hyper-parameters tuning with CS optimization 

algorithm in CS-VQ-SVR model 

 

3) The CS optimization algorithm improves the 

performance of models by finding optimized values 

for hyper-parameters as shown in Figure 3 for the CS-

VQ-SVR model. As observed, when the values of C, 

and 𝜎 gradually approach their optimum values, the 

accuracy of the model for the training dataset 

improves. The accuracy is shown by different colors 

from blue for minimum accuracies to green for 

maximum accuracies on the color bar.   

4) The SVR model is more robust and reliable than  

the AdaBoost.R2 model. 

Cross plots of predicted values from model predictions 

and actual values from experimental data for SVR, 

AdaBoost.R2, VQ-SVR, VQ-AdaBoost.R2, CS-VQ-SVR 

and CS-VQ-AdaBoost.R2 models are shown in Fig. 4.  

As observed, points got closer to the diagonal line as the 

VQ technique and CS optimization algorithm had been 

applied to the models and in the SVR model’s graph, 

points are more accumulated around the diagonal line 

compared to other models’ graphs.  

Graphs to compare predicted with actual values for every 

20 data for SVR, AdaBoost.R2, VQ-SVR, VQ-AdaBoost.R2,  
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Fig. 4: The cross plots for different models.  SVR model. AdaBoost.R2 model. VQ-SVR model. VQ-AdaBoost.R2 model.  CS-VQ-

SVR model. CS-VQ-AdaBoost.R2 model. 

 

 
Fig. 5: comparison of actual values with predicted values for 

the SVR model 

 

CS-VQ-SVR and CS-VQ-AdaBoost.R2 models are 

demonstrated in Figures 5, 6, 7, 8, 9 and 10, respectively. 

These figures also show that the agreement between predicted  

 
Fig. 6: comparison of actual values with predicted values for 

the AdaBoost.R2 model 

 

values and actual values in each model increase with the VQ 

technique and CS optimization algorithm. According to  

Fig. 9 and Fig. 6, the best and the worst agreement between 



Iran. J. Chem. Chem. Eng. Ganji, Zahrab et al. Vol. 42, No. 4, 2023 

 

1384                                                                                                                                                                Research Article 

 
Fig. 7: comparison of actual values with predicted values for 

the VQ-SVR model 

 

 
Fig. 8: comparison of actual values with predicted values for 

the VQ-AdaBoost.R2 model 

 

predicted values and actual values are for CS-VQ-SVR and 

AdaBoost.R2 models, respectively.  

As a result, the above observations confirm that the CS-

VQ-SVR model has excellent performance and can be 

utilized as a reliable, robust and fast method for predicting 

variation of pressure with respect to time at a given 

temperature in gas hydrate formation procedure. 

 

CONCLUSIONS 

Carbon dioxide and methane, which are two harmful 

greenhouse gasses, can be stored in gas hydrates to control 

their release and prevent their harmful effects. Gas hydrate 

formation conditions have been usually determined 

experimentally, which is costly and associated with errors. 

The present study provides data-driven models in the field 

of machine learning and artificial intelligence to predict 

gas hydrate formation conditions. In this regard different 

models based on SVR and AdaBoost.R2 models have been 

developed to predict the variation of pressure with time at 

a given temperature in the gas hydrate formation 

procedure. The results can be used to predict hydrate 

formation kinetics and reduce the experimental time and 

cost. The developed models are SVR, AdaBoost.R2, SVR-

VQ, AdaBoost.R2-VQ, SVR-VQ-CS, and AdaBoost.R2-

VQ-CS. These models have been compared with each 

other using graphical representations and statistical 

analysis methods to find one with the best performance. 

The CS algorithm as a meta-heuristic optimization 

technique has been applied to models in order to obtain the  

 
Fig. 9: comparison of actual values with predicted values for 

the CS-VQ-SVR model 

 

 
Fig. 10 comparison of actual values with predicted values for 

the CS-VQ-AdaBoost.R2 model 

 

optimal values for their parameters. In order to make these 

models more robust and accurate as well as speed up the 

computation time, the VQ technique has been used. 

According to the results, the values of  𝑅2 and 𝑅𝑀𝑆𝐸 for 

the SVR-VQ-CS model in the testing dataset have been 

obtained as 0.9995 and 0.0215, respectively, and the 

graphs associated with this model show the best agreement 

between predicted and actual values. Therefore, the SVR-

VQ-CS model has the best performance among developed 

models, and it can be utilized for the first time as a reliable, 

robust and fast method to predict the hydrate formation 

pressure with time. This Study confirmed that machine 

learning could be applied to predict gas hydrate formation 

conditions. It is expected that this study can be applied  

to utilize gas hydrate in industries to control greenhouse 

gases' harmful effects on Earth's atmosphere. 

 

Nomenclature 

Adaptive boosting AdaBoost 

Bias term b 

Regularization parameter (hyper-parameter) C 

Cuckoo search CS 

Number of experimental data points n 

Probability of detection of strange egg by host 

bird in CS algorithm (hyper-parameter) 
pa 

Coefficient of determination R2 

Gaussian radial basis kernel function RBF 
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Root mean square error RMSE 

Support vector machine SVM 

Support vector regression SVR 

Output value y 

Predicted value of output 𝑦̂ 

Average value of output 𝑦 ̅ 

Vector quantization VQ 

Weight vector w 

Size of each step in CS algorithm (hyper-parameter) 𝛼 

Hyper-parameter in CS algorithm 𝛽 

Tube size (hyper-parameter) 𝜀 

Slack variables ξ 

Slack variables ξ∗ 

Hyper-parameter of RBF kernel 𝜎 
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