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ABSTRACT: In this paper, control of a non-isothermal continuous stirred tank reactor in which 

two parallel autocatalytic reactions take place has been addressed. The reactor shows chaotic 

behavior for a certain set of reactor parameters. In order to control the product concentration,  

an optimal state feedback controller has been designed. Since concentrations of reactor species  

are not measured, an observer has been designed for implementation of the proposed control scheme. 

The local asymptotic stability of the closed-loop system including observer dynamics has been 

shown via the Lyapunov stability theorem. Effectiveness of the proposed controller in load rejection 

and set point tracking has been illustrated through simulation. 
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INTRODUCTION 

A chaotic system is a nonlinear deterministic system 

that shows a complex behavior. In general, for a certain 

set of parameter values, a nonlinear system can exhibit 

oscillations or even chaotic behavior. Chemical systems 

can have complex dynamics due to their nonlinear nature. 

There are extensive theoretical and experimental studies 

indicating presence of complex chaotic behavior in 

chemical reactions and chemical reactors. Gray & Scott 

have investigated the behavior of an isothermal 

Continuous Stirred Tank Reactor (CSTR) with autocatalytic 

reaction [1]. They observed limit cycles and instabilities 

in such a system [2]. Lynch et al. showed that chaotic 

oscillations are possible in a non-isothermal CSTR  

 

 

 

in which two, exothermic, first order, irreversible reactions 

are taking place in parallel [3]. Mankin & Hudson 

showed that chaos can occur in a forced exothermic 

chemical reactor [4]. They also showed existence of 

chaos in two coupled non-isothermal CSTRs [5].  

A tutorial review article on the research works regarding 

this topic up to 1988 is given by Doherty & Ottino [6]. 

An interesting variety of steady state behaviors are also 

observed in a non-isothermal CSTR [7]. Pellegrini & Biardi 

showed that using a PI controller in a CSTR can lead  

to chaos [8]. Perez & Albertos by changing parameters  

of the PI controller and cooling water flow rate in  

a CSTR could generate self oscillation and chaotic  
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dynamics [9]. Peng et al. observed chaotic behavior in  

a closed three-variable autocatalator [10]. Lynch showed 

that dynamics of a parallel cubic autocatalator can lead to 

chaos as the input concentration ratio to the reactor 

increases [11]. It was also shown that chaos occurs in  

a mixed cubic and quadratic autocatalytic reaction [12]. 

Lynch proved that existence of chaotic behavior does not 

depend on presence of a reaction step involving cubic 

autocatalysis, and showed that chaotic behavior  

is preserved when the cubic step is replaced by successive 

bimolecular steps involving an intermediate [13].  

An extended review regarding chaos and its applications 

in the process system engineering has been made by  

Lee & Chang [14]. Chaotic behavior is irregular, complex 

and generally undesirable. Therefore, within the research 

area of nonlinear dynamics, control of chaos has received 

increasing attention. Chaos control has been of broad interest 

since early 1990s. In 1990, Ott et al. showed that a chaotic 

attractor can be converted to one of a large number of 

possible attracting periodic motions by making only small 

time dependent perturbations in system parameters [15].  

This method is applied to a prototype model for 

isothermal chemical chaos to stabilize unstable limit 

cycles out of chaotic behavior [16]. Bandyopadhyay et al. 

have successfully applied this approach to stabilize  

the dynamics of a chaotic non-isothermal CSTR [17]. 

Another method was proposed by Pyragas in which  

a chaotic system can be stabilized by using proportional 

delayed feedback [18]. Chaotic dynamics of a set of 

coupled non-isothermal CSTRs is stabilized using this 

technique by Chen et al. [19]. This method has also been 

applied to the Belousov-Zhabotinsky (BZ) reaction to 

stabilize unstable periodic orbits embedded in the chaotic 

reactors [20]. Another approach for controlling a chaotic 

process is designing a model based controller.  

A controller based on internal model control has been 

designed by Bandyopdhyay et al. for a chaotic CSTR [21]. 

In this paper, it has been shown that a non-isothermal 

CSTR, in which two parallel autocatalytic reactions take 

place, may have chaotic behavior. The concentration 

control has been performed for this reactor through  

an optimal state feedback with integral action. Since 

implementation of the proposed controller requires 

system states, a nonlinear observer has been used for state 

estimation. The local asymptotic stability of the proposed 

control scheme including observer dynamics has been 

shown and its effectiveness has been demonstrated 

through simulation. 

 

REACTION KINETICS AND REACTOR MODELING 

As described by Lynch an isothermal CSTR 

composed of two parallel cubic autocatalytic reactions 

with catalyst decay can produce chaotic dynamics [11-13]. 

In this work, the non-isothermal version of these 

reactions has been considered. The reaction kinetics  

can be written as: 

2
A 1 A BA 2B 3B r C C+ → − = κ                          (1) 

B 2 BB C r C→ − = κ                              (2) 

2
D 3 D BD 2B 3B r C C+ → − = κ                         (3) 

where ( )i i ik exp E RT , i 1,2,3κ = − = . 

Reactor mass balances for species A, D and B yield: 

A 2
A0 A 1 A B

dC
V QC QC C C V

dt
= − − κ                              (4) 

D 2
D0 D 3 D B

dC
V QC QC C C V

dt
= − − κ                              (5) 

D 2
B0 B 1 A B

dC
V QC QC C C V

dt
= − + κ −                            (6) 

2
2 B 3 D BC V C C Vκ + κ  

Making energy balances for reactor and its jacket gives: 

( ) ( )p p 0 H A D B

dT
VC QC T T R C ,C ,C ,T

dt
ρ = ρ − + +      (7) 

( )jUA T T−  

( ) ( )j

j j pj j j pj j0 j j

dT
V C Q C T T UA T T

dt
ρ = ρ − + −             (8) 

where: 

( ) ( ) ( )2
H A D B 1 1 A B 2 2 BR C ,C ,C ,T H C C V H C V= −∆ κ + −∆ κ +  

( ) 2
3 3 D BH C C V−∆ κ  

In order to decrease the number of parameters in the 

above equations and simplify the mathematical model, 
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Table 1: Dimensionless variables and their definitions. 

Dimensionless 

variable 
Definition 

Dimensionless 

variable 
Definition 

Dimensionless 

variable 
Definition 

x1

 
A ref

C C  γ1

 
A0 ref

C C  Da1

 2

1 ref
Vk C e Q−ϕ  

x2

 
D ref

C C  γ2

 

D0 ref
C C  Da2

 
2

2

3 ref
Vk C e Q−ϕα  

x3

 
B ref

C C  γ3

 

B0 ref
C C  Da3

 
1

2
Vk e Q−ϕα  

x4

 
ref

T T  α1

 
2 1

E E  U1

 

P
UA QCρ  

x5

 
j ref

T T  α
2 

3 1
E E  U2

 

j j Pj
UA Q Cρ  

τ tQ V  β1

 ( ) ( )2 1
H H−∆ −∆  ς  

0 ref
T T  

ϕ 
1 ref

E RT  β2

 ( ) ( )3 1
H H−∆ −∆  u 

j0 ref
T T  

ε 
j j

VQ V Q  η
 ( )1 ref p ref

H C C T−∆ ρ    

 

the system equations are transformed to a dimensionless 

form as given below: 

4

1
1

x1 2
1 1 1 1 3

dx
x Da x x e

d

� �
−ϕ −� �

� �= γ − −
τ

                                  (9) 

2
4

1
1

x2 2
2 2 2 2 3

dx
x Da x x e

d

� �
−ϕα −� �

� �= γ − −
τ

                          (10) 

4

1
1

3 x2
3 3 1 1 3

dx
x Da x x e

d

� �
−ϕ −� �

� �= γ − + −
τ

                           (11) 

1 2
4 4

1 1
1 1

x x2
3 3 2 2 3Da x e Da x x e

� � � �
−ϕα − −ϕα −� � � �

� � � �+  

( ) ( )4
4 H 1 2 3 4 1 5 4

dx
x R x , x , x , x U x x

d
′= ς − + + −

τ
       (12) 

( )( )5
2 4 5 5

dx
U x x u x

d
= ε − + −

τ
                                  (13) 

where  

( ) 4

1
1

x2
H 1 2 3 4 1 1 3R x , x , x , x Da x x e

� �
−ϕ −� �

� �′ = η +  

1 2
4 4

1 1
1 1

x x2 2
1 3 3 2 2 2 3Da x e Da x x e

� � � �
−ϕα − −ϕα −� � � �

� � � �β η + β η  

The dimensionless variables and model parameters 

with their definitions are given in Table 1. In this table 

Cref and Tref are reference values of concentration and 

temperature respectively. 

Through simulation, it has been found that for the 

following values of system parameters: ϕ = 8, α1 = 0.8, 

α2 = 1.1, η = 0.375, β1 = 0.69, β2 = -0.37, γ1 = 1.5, γ2 = 4.2, 
 

γ3 = 1, Da1 = 5483.8, Da2 = 108.206, Da3 = 30.913, U1 = 200, 

U2 = 27, ς  = 1, u = 1, ε = 1, reactor has chaotic dynamics. 
 

The two and three dimensional forms of the attractor 

are shown in Figs.1 and 2.  

Additional details about the structure of the attractor 

can be provided by examining the Poincare section of the 

states variables on the transversal surface: x1 = 0.025.  

The Poincare map of the system shows fractal geometry 

whose projections on 2 3x x−  and 4 5x x−  surfaces  

are illustrated in Figs.3 and 4. Lyapunov exponents are the most 

useful dynamical diagnostic for chaotic systems and usually 

positive Lyapunov exponents imply chaotic dynamics.  

As a matter of fact, they quantify the exponential divergence 

of initially close state space trajectories and estimate the amount 

of chaos in a system. The method presented by Wolf et al. has 

been used for obtaining the Lyapunov exponents and their 

variations with respect to time are shown in Fig.5 [22]. 

As can be seen from Fig.5, system has three negative 

and one zero Lyapunov exponents and one positive 

Lyapunov exponent with the value of 1.48. 

Chaotic behavior in chemical reactors occurs due to 

undesirable concentration variations of some components. 

Control of chaotic reactors is a challenging problem 

because these variations can lead to thermal runaway. 

For the reactor under consideration, the equilibrium 

point is xe = (x1e, x2e, x3e, x4e, x5e) = (0.0222, 1.6892, 

0.0595, 1.1819, 1.1754). If the dimensionless jacket inlet 

temperature is chosen as manipulated variable, the model  
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Fig. 1: Two dimensional plot of the attractor, x4 versus x5. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Three dimensional plot of the attractor. 
 

can be written in the standard input affine form, as given below: 

x f (x) bu= +�                                                             (14-a) 

y cx=                                                                        (14-b) 

where 

( ) ( )

( )( )

4

2
4

4

1 2
4 4

1
1

x2
1 1 1 1 3

1
1

x2
2 2 2 2 3

1
1

x2
3 3 1 1 3

1 1
1 1

x x2
3 3 2 2 3

4 H 1 2 3 4 1 5 4

2 4 5 5

x Da x x e

x Da x x e

f (x) x Da x x e

Da x e Da x x e

x R x , x , x , x U x x

U x x x

� �
−ϕ −� �
� �

� �
−ϕα −� �

� �

� �
−ϕ −� �
� �

� � � �
−ϕα − −ϕα −� � � �

� � � �

� �
	 
γ − −
	 

	 

	 
γ − −
	 

	 


= 	γ − − −
	
	
	 +
	

′	ς − + + −
	
ε − −	� �


















   (15) 

T

0 0

0 0

b 0 , c 1

0 0

0

� � � �
	 
 	 

	 
 	 

	 
 	 
= =
	 
 	 

	 
 	 

	 
 	 
ε� � � �

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: x3 versus x2 on the surface of x1 = 0.025. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: x5 versus x4 on the surface of x1 = 0.025. 
 

The schematic diagram of the process has been shown  

in Fig.6. Jacket inlet temperature has been used as 

manipulated variable. In practice by changing hot and 

cold flow rates, the jacket inlet temperature can be fixed 

to the desired value. Since control valves have very fast 

dynamics in comparison to the process, mixing with  

no dynamics has been assumed. 

The main objective of this work is to control the 

chaotic behavior of the above reactor at its equilibrium point. 

The unstable limit cycles, due to their cyclic patterns are 

not desired for a reactor. Therefore it is attempted  

to stabilize asymptotically the equilibrium point of the 

system which leads to a steady and uniform concentration 

of the reactor product. As a first attempt, control of 

reactor concentration using the traditional PID controller 

was tested. Since the process has a chaotic behavior, 

standard tuning techniques like Ziegler-Nicholes method 

cannot be used. Therefore it was tried to find controller 

parameters by trial and error. Unfortunately no suitable 

controller parameters were obtained. As an alternative 

method, an objective function (integral square of error) 
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Fig. 5: Convergence of Lyapunov exponents. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: schematic diagram of the reactor. 

 

was defined and the genetic algorithm was used to 

minimize this performance index but no feasible set of 

controller parameters was obtained. Consequently  

it was tried to apply the feedback linearization method, 

due to nonlinear nature of the system. Because of some 

singularities associated with the control action provided 

with this method, this strategy was not also applicable. 

Therefore, the linear state feedback control strategy  

was applied to control the system instead of the Global 

Linearization Control (GLC) method. 

 

Linearized model 

In order to perform stability analysis and controller  

design, the linearized model around the equilibrium point 

of Eqs.9-13 is obtained and given below: 

x Ax bu= +�                                                                  (16) 

where 

[ ]
ex x

A f x
=

= ∂ ∂ =                                                      (17) 

      

67.5 0 49.6252 8.455 0

0 2.484 84.2696 15.79 0

66.5 1.4841 50.117 1.6829 0

24.9 0.206 28.3358 194.18 200

0 0 0 27 28

− − −� �
� �

− − −� �
� �
� �

− −� �
� �−� �

 

The eigenvalues of A  are λ1 = -221.4, λ2 = -27.6,  

λ3,4 = 3.98±17.7i, λ5 = -1. The computed eigenvalues 

show that, the process is unstable around its equilibrium point. 

 

CONTROLLER  DESIGN 

In this section, using the linearized model, a controller  

based on state feedback technique for achieving the 

desired product composition (x3) has been proposed. 

In order to provide feedback controller with integral 

action on the third state, the time derivative of this state 

has been set to zero and the resulting equation  

is augmented into system equations. Controllability matrix 

of the augmented linearized model, shows that the system 

is locally controllable. An optimal controller, based on 

the following objective function, has been designed. 

( ) ( )( ) ( ) ( ) ( ) ( )( )T T
x u

0
J x t ,u t x t R x t u t R u t dt

∞
= +
   (18) 

where Rx and Ru are symmetric, positive semi-definite 

and positive definite matrices respectively. The optimal 

input that minimizes the above objective function is given 

by u = -kx, where k is obtained by solving the associated 

Riccati equation. 

 

OBSERVER  DESIGN 

Implementation of designed optimal state feedback 

controller requires system states, while in the most of 

practical applications only some of the sates are available. 

For the reactor under consideration, it is assumed that 

only reactor temperature is measured and other states 

including concentrations of different species and jacket 

temperature are not available. An observer can be used 

for estimating the unavailable states. Since f is a locally 

Lipschitz vector field function, Eq.14 can be written as: 

ex x

f
x Ax Ax f (x) bu , A

x =

∂
= − + + =

∂
�             (19-a) 

y = cx                                                                        (19-b) 
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The above equation can be written in the following form: 

x Ax f (x) bu= + + + θ��                                               (20-a) 

y = cx                                                                        (20-b) 

where f (x)�  = -Ax + f(x) - θ and θ is a constant 

vector. f (x)�  is a locally Lipschitz vector field function 

such that f (0) 0=� . If (A,c) is observable, then there 

exists a vector K such that real parts of all eigenvalues of  

A0 = A-Kc
 
are negative. The following observer proposed 

by Thau has been used [23]. 

( ) ( )ˆ ˆ ˆ ˆx Ax f x bu K y y= + + + − + θ� �                               (21) 

Defining the observer error as ˆ ˆe x x= − , the observer 

error dynamics can be described by 

( ) 0
ˆ ˆ ˆ ˆˆe A Kc e f (x) f (x) A e f (x) f (x e)= − + − = + − −� � � � �     (22) 

Since A0 is stable, for any symmetric positive definite 

matrix Q, there is a unique symmetric positive definite 

matrix P such that 

T
0 0A P PA Q+ = −                                                          (23) 

Consider the following Lyapunov function: 

Tˆ ˆV e Pe=                                                                      (24) 

The time derivative of V along the solution of Eq. (22) 

becomes 

( ) ( )T Tˆ ˆ ˆ ˆV e Qe 2e P f x f x e� �= − + − −� �
� ��                           (25) 

Since f�  satisfies the Lipschitz condition, the 

following inequality holds 

( ) ( )1 2 1 2f x f x L x x− ≤ −� �                                        (26) 

Using inequlity (26) in Eq. (25) yields 

( )( ) 2T
min

ˆ ˆ ˆ ˆ ˆV e Qe 2L Pe e Q 2L P e≤ − + ≤ −λ +�     (27) 

Hence if 

min (Q)
L

2 P

λ
<                                                                 (28) 

then, the Thau observer is asymptotically stable.  

In presence of unmeasured disturbance, the observer  

can be extended to estimate the disturbance along  

with state estimates. To do this, the observer is 

augmented to include the observable disturbances. 

STABILITY PROOF OF CLOSED LOOP SYSTEM 

In this section local stability of the closed loop system  

including observer dynamics has been shown. If control 

error is defined as 

ee x x= −                                                                      (29) 

then, closed loop and observer error dynamics  

are given by 

( ) ( )2
ee Ae o e b u u= + + −�                                           (30) 

( ) ( )0
ˆ ˆ ˆe A e f x f x e= + − −� � �                                             (31) 

Where o(e2) indicates the higher order error terms. 

State feedback control law can be written as 

( ) e
ˆu k e e u= − − + , where ue denotes control action at the 

equilibrium point. Now, consider the following Lyapunov 

function: 

T T
1

ˆ ˆV e P e e Pe= +                                                          (32) 

Where P is obtained from the Lyapunov equation of (23). 

The time derivative of V becomes 

T T T T
1 1

ˆ ˆ ˆ ˆV e P e e P e e Pe e Pe= + + +� �� � �                                  (33) 

Eq.33 along the solution of Eqs. (30) and (31) is rewritten as: 

( ) ( )T T T T
1 1V e A k b P P A bk e� �= − + − +� �

�                   (34) 

( )T T T T T T
0 0 1 1

ˆ ˆ ˆ ˆe A P PA e e k b P e e P bke+ + + +  

( ) ( )( ) ( )T 3ˆ ˆ2e P f x f x e O e− − +� �  

Let A-bk=A1, then V�  becomes, 

( ) ( )T T T T
1 1 1 1 0 0

ˆ ˆV e A P P A e e A P PA e= + + + +�              (35) 

( ) ( )( ) ( )T T T T T 3
1 1

ˆ ˆ ˆ ˆe k b P e e P bke 2e P f x f x e O e+ + − − +� �  

Defining T
1 1 1 1 1A P P A Q+ = − , T

0 0A P PA Q+ = − , Eq. (35) 

can be written as 

T T T T T
1 1

ˆ ˆ ˆV e Q e e Qe e k b P e= − − + +�                              (36) 

( ) ( )T T 3
1

ˆ ˆ ˆe P bke 2e P f (x) f (x e) O e+ − − +� �  

According to Rayleigh inequality, 

( ) ( )T T T
min max

ˆ ˆ ˆ ˆ ˆ ˆQ e e e Qe Q e eλ ≤ ≤ λ                            (37) 

( ) ( )T T T
min 1 1 max 1Q e e e Q e Q e eλ ≤ ≤ λ  
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Fig. 7: Set point trajectory and closed loop response of x3  for 

set point tracking. 

 

Using inequalities (26) and (37), Eq.(36) can be written as: 

( ) ( )
2 2

min 1 min 1
ˆV Q e Q e≤ −λ − λ +�                          (38) 

( )2 3
1

ˆ2 e P b k e 2L P e O e+ +  

The last term of inequality (38) can be neglected in the 

vicinity of origin. Defining α,β and γ as ( )min 1Qα = −λ , 

( )min Q 2L Pβ = −λ + , 12 P B kγ = , inequality (38) 

can be written as: 

( )
2 e

ˆV e e
ˆ2 e

α γ � �� �
≤ � �� �

γ β� �� �

�                                   (39) 

From the above inequality it is observed that V�  is 

locally negative definite if: 

20 & 4α < γ < αβ  

or equivalently, 

( ) ( )( )2 2 2

1 min 1 minP b k Q Q 2L P< λ λ −              (40) 

Therefore if Q and Q1 are chosen such that the above 

condition is satisfied, the closed loop system including 

observer dynamics is locally asymptotically stable. 

 

SIMULATION RESULTS 

In this section, simulation results are presented to 

show the effectiveness of the proposed controller.  

To make the simulations more realistic, actuator constraint 

has been taken into account and it is assumed that the jacket 

inlet temperature can be changed between 93% and 122%  
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8: Control action for x3 set point tracking. 

 

 

of reference temperature. For controller design, the 

weight matrices were chosen as given below: 

x u

10 0 0 0 0 0

0 10 0 0 0 0

0 0 300 0 0 0
R , R 1

0 0 0 10 0 0

0 0 0 0 10 0

0 0 0 0 0 400

� �
� �
� �
� �

= =� �
� �
� �
� �� �
� �

 

For these weight matrices the controller gain is 

[ ]k 65.9105, 7.5989, 58.6105,7.2008,32.6163, 20= − − − − . 

To check the performance of the control scheme in the 

absence of observer dynamics, first it is assumed that all 

states are available. First the proposed controller is tested 

for set point tracking. As shown in Fig. 7, the desired 

trajectory has been well tracked. The corresponding 

control action is shown in Fig. 8. 

In what follows, effect of disturbance on the closed 

loop response has been studied. One of the common loads 

is variation of feed concentration. Therefore γ1 has been 

considered as the main disturbance for this process. 

Simulation result when γ1 changes from 1.5 to 1.45 at τ=5 

and next to 1.4 at τ=25 is shown in Fig. 9. As can be 

seen, loads are rejected satisfactorily. The corresponding 

control action has been depicted in Fig. 10. 

So far, it has been assumed that all states are 

available, but this is not the case in practice. 

Concentration measurement is difficult and usually has 

time lag. It can be shown that the system is observable 

through reactor temperature measurements. Based on 

availability of reactor temperature measurements, 
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Fig. 9: Closed loop response of x3 for disturbance in γγγγ1. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10: Control action for x3 for disturbance rejection. 

 
an observer has been designed. Besides system states, 

the feed concentration, is also estimated using an 

augmented observer. In all simulations, the initial values 

of state estimates and feed composition estimate are set to 

[ ] [ ]T T

10 20 30 40 50 10
ˆˆ ˆ ˆ ˆ ˆx , x , x , x , x , 0.05,1.9,0.03,1, 1,1.5γ = . 

The observer gain, K, has been determined such that poles of 

observer are placed
 
to {-19, -19.5, -20, -20.5, -21, -21.5} 

and correspondingly the observer gain is  

K = [-83.0687, -218.8907, 135.3364, -120.5511, 27.0704, 

418.7773]T. 

First, set point tracking performance of the proposed 

controller using the designed observer is investigated.  

As shown in Fig.11 the desired trajectory has been  

well tracked. The corresponding control action is shown  

in Fig. 12. 

The estimation errors of desired product composition 

and feed concentration are shown in Figs. 13 and 14.  

As can be seen, both errors have converged to zero. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 11: Set point trajectory and closed loop response of x3 for 

set point tracking using observer. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 12: Control action for x3 set point tracking using observer. 

 
Finally, the load rejection performance of the proposed 

controller in presence of observer is investigated. In order 

to test the load rejection performance, γ1 is changed from 

1.5 to 1.45 at τ=20 and next to 1.4 at τ=40. The closed 

loop response of x3  is shown in Fig.15. As can be seen 

loads are rejected fairly well. The corresponding control 

action is shown in Fig.16. The estimation errors of 

desired product composition and feed concentration  

are shown in Figs.17 and 18 respectively. As can be seen 

both errors have converged to zero. 

The simulation results indicate that the optimal state 

feedback controller has a good performance in load 

rejection and set point tracking when the system state 

variables are available. When the system states are not 

measured, they can be estimated by designing an observer. 

Simulation results indicate that the designed observer has 

a good performance and the system states are estimated 

pretty fast. Besides the system states, the feed concentration, 

is also estimated using an augmented observer. 
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Fig. 13: Estimation error of x3  in set point tracking. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14: Estimation error of feed composition in set point 

tracking.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15: Closed loop response of x3 for load rejection using 

observer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16: Control action for x3 for load rejection using 

observer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17: Estimation error of x3  in load rejection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18: Error of feed composition estimate in load rejection. 
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The controller performance is also satisfactory when  

it is coupled with the state estimator. 

 

CONCLUSIONS 

In this paper, a non-isothermal version of Lynch’s 

autocatalytic reactions has been modeled using mass and 

energy balances. Simulation results indicate that, the 

reactor has a chaotic behavior for a certain set of 

parameter values. An observer based controller possessing 

integral action has been designed to provide off-set free 

control of desired product concentration. The Lyapunov 

stability theorem is used to establish local asymptotic 

stability of closed loop system including observer 

dynamics. It has been shown that the proposed controller 

has good set point tracking and load rejection performances. 

 
NOMENCLATURE 

A                                                             Heat transfer area 

CA, CD, CB    Concentrations of A, D and B in the reactor 

CA0, CD0, CB0             Concentrations of A, D and B in the  

                                                                         reactor feed 

CP                                                     Solution heat capacity 

CPj                                               Jacket fluid heat capacity 

E1, E2, E3                                              Activation energies 

k1, k2, k3                                                Reaction constants 

Q                                                 Flow rate through reactor 

Qj                                                                Jacket flow rate 

R                                                             Ideal gas constant 

t                                                                                   Time 

T                                                         Reactor temperature 

Tj                                                           Jacket temperature 

T0                                                             Feed temperature 

Tj0                                                  Jacket inlet temperature 

U                                                   Heat transfer coefficient 

V                                                                Reactor volume 

Vj                                                                  Jacket volume 

 
Greek letters 

∆H1, ∆H2, ∆H3                                         Heat of reactions 

ρ                                                                Solution density 

ρj                                                          Jacket fluid density 
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