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ABSTRACT: Structural repetitive subsequences are most important portion of biological 

sequences, which play crucial roles on corresponding sequence’s fold and functionality. 

Biggest class of the repetitive subsequences is “Transposable Elements” which has its own 

sub-classes upon contexts’ structures. Many researches have been performed to criticality 

determine the structure and function of repetitive subsequences. The sequencing noises and  

the sequences’ substitutions probability are obstacles of these researches. Some statistical and 

approximation algorithms have introduced to tackle these obstacles. By introducing 

conspicuous statistical machine learning methods upon Support Vector Machines, machine learning 

approaches act as potent methods to solve the pattern-finding problem. Support vector 

machines methods are time efficient approaches, which based on their parameters can be 

precise and accurate. In this Review, mathematical definition of structural repetitive 

subsequences are introduced, thereafter proposed algorithm to tackle simple pattern finding 

problem, which can be applicable on structural patterns are reviewed. Theoretical aspects of 

Support Vector Machines on computational biology platform are considered. Finally, novel 

evolutionary Fuzzy SVM will be introduced, which is applicable on wide range of 

bioinformatics problems especially the problem of structural repetitive subsequences. 
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INTRODUCTION 

Nowadays, by improving sequencing tools, studying 

and analyzing genomic sequences becomes a major 

field of study that motivates scientists to propose 

efficient and precise approaches. Since Britten et al. 

discovered structure of eukaryotes’ genome and showed  

that significant subsequences are dispersed through 

eukaryotes’ gnome, the first step of studying eukaryote  

 

 

 

genome became extracting significant subsequences [1,2].  

On the other hand, in spite of improvement in 

sequencing methods, the uncertainty which exists on 

sequenced genomes necessitates the use of IUPAC 

letters in sequence content.  

Experimental results showed that there are some 

significant subsequences with similar contents.  
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Consequently this kind of significant subsequences  

is called "repeated subsequences". Repeated subsequences 

are divided into different classes, where each class’s 

members are similar to each other. Upon the members’ 

similarity, each class represents a specific family of 

repeated subsequences. 

Moreover, discovery of homolog families among 

different eukaryote species led to establishment of 

some repeat libraries that include discovered repeated 

subsequences’ context and families. These homolog 

families imply that repeated subsequences are not only 

most conserved portions of eukaryotes genome but 

also play crucial roles in species lives. Hence in this 

context discovering repeated subsequences and also 

resolving their family are two essential problems 

towards solving sequence analyzing problem. 

There is a specific style of repeated subsequences 

that covers huge numbers of repeated subsequences. 

This style’s members which are called “structural 

repeated subsequences” are following different 

repetition rules and have different roles on genome 

structure or cells’ living cycle. 

A lot of approaches have been introduced for 

repetitive subsequences discovery and more issues 

have published on classifying the discovered 

subsequences. Some library-based approaches try  

to discover repeated subsequences which their family 

had been discovered before. On the other hand, lots of 

ab-initio approaches have been introduced that discover  

a genome’s repetitive subsequences without using 

current repeat-libraries [3-5]. 

In this Review, we are going to overview  

the pattern finding problem and thereafter one of 

potential pattern discovery approaches, called SVM 

will be introduced. Finally, a novel idea on structural 

repeat discovery via fuzzy SVM will be represented. 

 

BIOLOGICAL ASPECTS OF PATTERN FINDING 

PROBLEM 

This section is focused on describing pattern 

finding problems in biological systems and thereafter  

a brief review of definitions of structural repetitive 

sequences will be presented. These definitions would 

be enough to embark computational aspects of  

the problem. Repetitive patterns which are discussed  

in this section are usually functionally or structurally 

important elements in proteins or DNA sequences,  

in that they cover 50 percents of human genome [6]. 

These sequences occur more frequently than expected 

and most biologists, to present a reason, hold  

an opinion that these sequences are best conserved  

in evolution because they play important roles  

on genome’s structure and functionality. So pattern 

discovery is one of the fundamental problems  

in bioinformatics. Introduced approaches to solve  

this problem can be used in other bioinformatics problems 

such as multiple sequence alignment, protein structure 

and functionality prediction, characterization of protein 

families, promoter signal detection, and etc [7, 8]. 

 

Biological Motivations for Pattern Discovery 

Nucleotide and protein sequences contain patterns 

or motifs that have been preserved through evolution 

because they are important to the structure or function 

of the molecule. In case of proteins, these conserved 

sequences may be involved in the binding of  

the protein to its substrate or to another protein,  

may comprise the active site of an enzyme or  

may determine the three dimensional structure of  

the protein. Some of these repeated sequences are flanked 

between two coding regions; on the other hand,  

there is a biological fact that in general, sequences 

outside of coding regions tend to be less conserved 

through organisms, except where they play important 

function. This rigorous fact proves the importance  

of repetitive sequences when it is discovered previously 

that the flanked repeated subsequences are involved  

in the regulation of gene expression [9]. 

According to above description on conserved 

sequences inside of DNA or protein, discovering these 

sequences can lead to elucidate evolutionary relationships 

among sequences. 

 

Pattern discovery in proteins 

Several applications are available for identifying 

motifs in proteins that have evolved by divergent 

evolution. These patterns which appear in families 

with common ancestors can be used in methods which 

organize all of the proteins into families based on the 

presence of common signature sequences [10,11].  

In order to increase the certainty that a protein has 

been assigned to a correct family, members of protein 
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families are often characterized by more than one 

motif (on average each family has 3-4 conserved 

regions) Since hierarchical trees of protein clusters 

often reveal functional and evolutionary relationships 

among proteins, proteins can be assigned to a family 

based on sequence homology as determined primarily 

by alignment. However, there are two problems  

with this assumption: 

� Significant sequence similarities are not always 

indicative of close evolutionary relations, 

� Despite partial sequence homology, proteins can 

have structural and mechanistic similarities, and even 

common ancestry is not apparent through alignment. 

Therefore, considering structural information could be 

convenient when attempting to classify proteins that 

are highly divergent in homology, yet functionally 

equivalent. Such this approach has been used to 

identify motifs in proteins that may be related through 

convergent evolution. Leucine zipper sequences, involved 

in protein demyelization, appear in diverse families 

that lack a common ancestor and thus may be  

an example of a convergent motif. 

Another analysis on identification of patterns that 

have been conserved through evolution can lead to  

the discovery of association of these sequences with 

protein function or structure. A first step towards function 

prediction is to look for sequence features that are 

common to groups of proteins with a specified activity 

but are absent from proteins without the activity. 

Savoie et al. [12] used such an approach to develop  

a recognition rule for sequences that determine whether 

a peptide will activate a T- cell response. These conserved 

sequences are essentially antigenic determinants that 

elicit an immune response and can be used to develop 

vaccines. The premise of all attempts to assign  

a function to unknown proteins by pattern recognition 

is that highly conserved sequences have been preserved 

through evolution because they are important to  

the function or structure of the protein. While intuitively 

this seems a valid assumption, it is possible that some 

conserved sequences simply correspond to regions 

with a lower rate of mutation. 

Albeit the above analyzes have been performed, 

functional motifs may not be apparent in the protein 

primary sequence when they consist of single conserved 

amino acid residues separated by long, variable 

regions, these conserved residues may come together 

to form a functional group when the protein is folded 

into its three dimensional structure [13]. On the other hand, 

patterns of conserved sequences can often highlight 

elements that are responsible for structural similarity 

between proteins and can be used to predict the three 

dimensional structure of a protein. 

Because some amino acids share similar characteristics 

such as size, charge or hydrophobicity, substitutions 

are often permitted in protein motifs even where 

residues are important to structure or function.  

Nevill-Manning et al. [14] describe a method for 

discovering conserved motifs that characterize a protein 

family but are somewhat flexible in the amino acids 

allowed in particular positions within the motif. Groups of 

amino acids occurring at each position in a motif with 

significant frequency were identified and used  

to characterize subsets of motifs that are biologically 

relevant. While a motif should be sensitive enough  

to allow identification of new family members with  

a minimum of false negatives, there may be a tradeoff 

in terms of specificity; lower specificity leads to  

the identification of false positive sequences. 

Once biological dictionaries of protein sequence 

patterns are constructed (protein motif databases), they 

can be used to predict the function of newly discovered 

or unknown proteins, or to screen genomic databases 

for other proteins with similar function. 

 

Pattern discovery in non�coding regions 

Similar to patterns in proteins, motifs in DNA 

sequences can be used to determine the function of 

nucleotide sequences on a global level. The first 

application of motif finding in DNA is in finding  

all promoters in a genome. Finding all promoters in large 

genomic sequences necessitates the identification of 

features that are common to all promoters but  

are not present in non-promoter sequences. This is a difficult 

problem, especially in eukaryotic organisms which  

do not have a single core promoter and are usually 

associated with multiple regulatory factors. Some of 

the available approaches to solve the problem include: 

� The identification of global signals that interact 

with RNA polymerase and general transcription 

factors (e.g., TATA and CAAT boxes, CpG islands), 

� The detection of upstream regions with a high 
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density of transcription factor binding sites (although 

these are often not clustered), 

� The identification of sequence characteristics that 

influence DNA three dimensional structure (regions 

downstream of the TATA box tend to be highly bendable 

while regions upstream have low bend ability) [15]. 

Another application of motif finding is to determine 

specific functions such as regions involved in tissue 

specific regulation of gene expression which involves 

identifying specific regulatory sequences in promoter 

regions. Prediction of regulatory protein binding sites 

can help to infer the function of a gene when homologous 

genes of known function are not available. 

When the transcription factor binding motifs are 

unknown, they can be found by searching for common 

elements in the upstream regions of genes that  

are known to be co-regulated (such genes are known  

as regulons) [16, 17]. A comparative approach can be 

used to predict regulatory sequences in different 

genomes, however, the cognate regulatory factor must 

be known to be conserved [18]. 

Finding motifs in RNA sequences is also of 

researcher’s interest; however, RNA molecules such as 

tRNA, rRNA and catalytic RNA are usually more 

conserved in structure than in sequence. The properties 

of an RNA molecule are often determined by  

its structure which can take various forms as a 

consequence of intra molecular base pairing within the 

single stranded molecule, for example, pseudo knots, 

hairpin loops, bulges, etc. Rather than looking for 

motifs, an RNA sequence is searched for regions that 

could potentially contain base pair to form secondary 

structure. Obviously, in order to do so, distance 

constraints would have to be applied and a minimum 

number of base pairs would be required [19]. 

 

Structural repetitive sequences 

Tandem Repeats 

A particularly interesting problem in pattern 

finding involves the detection of tandem repeats, 

which are two or more contiguous approximate copies 

of a pattern of nucleotides. Tandem duplication occurs 

as a result of mutational events in which an original 

segment of DNA, the pattern, is converted into  

a sequence of individual copies. With the progression of 

time, the individual copies within a tandem repeat may 

undergo other “uncoordinated" mutations which render 

the once-identical copies in the original pattern as only 

approximate variations of each other. 

The prevalence of tandem repeats is surprisingly 

high in genomic sequences. [20] notes that Tandem 

repeats are presumed to occur frequently in genomic 

sequences, comprising perhaps 10% or more of  

the human genome, But, accurate characterization of 

the properties of tandem repeats has been limited by 

the inability to easily detect them". As Benson 

explains, the detection of tandem repeats has come to 

assume an increasing importance in genomic research, 

for both positive and negative reasons. On the negative 

side, the appearance of specific kinds of tandem 

repeats has been linked to a number of different 

diseases. On the positive side, however, it appears that 

tandem repeats may play a role in gene regulation 

(interacting with transcription factors, altering  

the structure of the chromatin, or acting as protein binding 

sites [14] and in the development of immune system cells. 

 

Transposable elements 

After considering biological aspects of repetitive 

sequences, in this section is focused on considering 

two styles of repetitive sequences which cover structural 

repetitive sequences. As mentioned structural repeated 

subsequences are subclass of repetitive sequences, 

therefore computational aspects of this subclass  

is not illustrated separately. Transposable elements cover 

big portion of eukaryotes genome and play crucial role 

on genes functionality. Transposable elements can transpose 

through genome and in each transition make duplicate 

of itself. Transposable elements based on their 

transposition’s intermediate are divided to two classes; 

• RNA is intermediate (Class I) 

• DNA performs, transposable element belong to 

class II. 

Transposable elements include four features;  

(1) coding regions, (2) repeated/inverted subsequences, 

(3) non-coding regions, (4) some open reading frames, 

where each transposable element composed of  

some of above features. Hence, transposable elements  

can be divided to more subclasses based on used 

features and also arrangement of these features. 

After a long time that there was not a clear 

classification for transposable elements subclasses, 
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Fig. 1: Hierarchical identification of transposable element (Photo taken from [21]). 
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recently [21] proposed so clear hierarchical catalogue 

of transposable elements structures and identified each 

structure’s class, its subclasses, and its major classes (Fig. 1). 

Here, we just borrow hierarchical classes structure and 

for comprehensive information refer to [21]. 

 

COMPUTATIONAL  ASPECTS 

Computer science questions on repetitive pattern 

finding 

In this section, we will discuss how to translate 

mentioned biological questions about pattern discovery 

to formal computer science problems. 

 

Classification problems 

One class of problems is classification problems. 

These problems occur for example in specification of 

protein families. One of the goals of finding common 

motifs in protein families is to use these motifs  

as classifiers: given an unknown protein, we can classify 

it as a member or nonmember of a family, based on  

the fact that it contains the motifs characteristic for  

the family. In this case, we may formulate question  

as a machine learning problem: given a set of sequences 

belonging to the family (positive examples) and a set of 

sequences not belonging to the family (negative 

examples) one may wish to find a function f which for 

each protein decides whether it belongs to the family 

or not. In context of motif discovery we are mostly 

interested in such classes of functions f that involve 

matching some discovered patterns against the unknown 

sequence. Note that negative examples are simply 

other known proteins taken from protein databases 

such as SWISS-PROT. Quite often people start only 

from positive examples and negative examples are 

used for evaluation of their classifiers. 

 

Finding significant patterns 

Motif discovery is not always formulated as  

a classification problem. For example if we want to find  

a regulatory element, we might have a set of regions 

that contain motif subsequences. However it does not mean 

that this element cannot occur in other places in genome  

or that all of these sequences must contain common 

regulatory elements. Also in context of protein family 

motifs we are interested in finding conserved regions 

that may indicate structurally or functionally important 

elements, regardless of whether they have enough 

specificity to distinguish between this family and other 

families. Therefore, it is more complicated  

to formulate the question precisely. Usually people 

define a class of patterns they want to find and they  

are interested in discovering the highest scoring pattern 

from this class that has enough support. Various 

pattern finding approaches differ in the way of 

defining a support and a score of a pattern. Support of 

a pattern usually means the number of sequences  

in which the pattern occurs. We can require that pattern 

should occur in all sequences or there are a minimum 

number of occurrences specified by user. In some 

cases the number of occurrences is not specified but  

it is part of a scoring function (longer pattern with fewer 

occurrences can be sometimes more interesting than 

shorter pattern with more occurrences). The situation 

is even more complicated in the case of probabilistic 

patterns, such as hidden Markov models. Deterministic 

patterns either match sequence or do not (zero or one), 

whereas probabilistic models give a probability 

between 0 and 1. Therefore, there are different degrees 

of “\matching". It is necessary to set some threshold on 

what should be considered a match or to include these 

matching probabilities in the score of the pattern. 

Methods for scoring patterns also differ from paper  

to paper. Score can describe only the pattern itself  

(e.g. its length, degree of ambiguity etc.) or it can be based 

on the occurrences of the pattern (their number, how 

much these occurrences differ from the pattern). 

Scoring functions are sometimes based on statistical 

significance. For example we may ask what the probability 

that a pattern would have so many occurrences if the 

sequences were generated by random. If this probability 

is small, the pattern is statistically significant. 

The goal of an algorithm may be to find the best 

(i.e. usually the highest scoring patterns), or to find 

several best scoring patterns, or all patterns with some 

predefined level of support and score. 

 

Pattern discovery vs pattern matching 

So far we have discussed the problem of pattern 

discovery, the algorithm is supposed to discover 

pattern which is unknown in advance. However  

in biology many consensus sequences are known and  

it is important to have tools that allow finding occurrences 
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of known patterns in new sequences. This problem  

will be called pattern matching. 

 

Pattern discovery problem 

Input sequences 

The input of pattern discovery programs usually 

consists of several sequences, expected to contain  

the pattern. We will use � as the alphabet of all 

possible characters occurring in the sequences. Thus, 

� = {A, C, G, T} for DNA sequences and also � is a 

set of all 20 amino acids for protein sequences. Some 

algorithms not only make use of sequences, but also 

may use information about secondary or tertiary 

structure, evolutionary relationships between sequences 

and so on. However, we usually concentrate on the 

discovery of patterns only from unaligned sequences. 

Following we will describe Pattern representation 

language to formally express our problem. 

 

Regular expressions 

The simplest kind of a pattern is just a sequence of 

characters from alphabet �, such as TATAAAA,  

the TATA box consensus sequence. We can also allow 

more complex patterns, adding some of the following 

frequently used features. 

 

Ambiguous character 

This is an unspecified character in a sequence 

which can be chosen from a certain subset of �. 

Ambiguous character thus matches any character from 

this subset. Such sets are usually denoted by a list of 

its members enclosed in square brackets e.g. [LF]  

is a set containing L and F. A-[LF]-G is a pattern in  

a notation used in PROSITE database. This pattern 

matches 3-character subsequences starting with A, 

ending with G and having either L or F in the middle. 

For nucleotide sequence there is a special letter for 

each set of nucleotides, where R=[AG], Y=[CT], 

W=[AT], S=[GC], B=[CGT], D=[AGT], H=[ACT], 

V=[ACG], N=[ACGT]. 

 

Wild-card or don't care 

is a special kind of ambiguous character that 

matches any character from �. Wild-cards can be 

denoted by N in nucleotide sequences and X in protein 

sequences. But they are often denoted by dot '.'. 

Sequence of one or several consecutive wild-cards  

is called gap and patterns allowing wild-cards are often 

called gapped patterns. 

 

Flexible gap 

Flexible gap is a gap of variable length. In PROSITE 

database it is denoted by x(i,j) where i is the lower 

bound on the gap length and j is an upper bound. Thus 

x(4,6) matches any gap with length 4, 5, or 6. They 

also denote a gap of length i as x(i) (e.g. x(3) = ...). 

Finally * denotes gap of any length (possibly 0). 

Following string is an example of a PROSITE 

pattern containing all mentioned features:  

F-x(5)-G-x(2,4)-G-*-H. Some programs do not allow 

all these features, for example they do not allow 

flexible gaps or they allow any gaps but do not allow 

ambiguous characters other than a wild-card. 

 

Patterns with mismatches. 

One can further extend expressive power of 

deterministic patterns by allowing certain number of 

mismatches. Most commonly used type of mismatches 

is substitutions. By considering substitution 

probability, subsequence S matches pattern P with  

at most k mismatches, if there is a sequence S’ exactly 

matching S that differs from S in at most k positions. 

Sometimes we may also allow insertions or 

deletions, i.e. the number of mismatches would be  

an edit distance between the substring S and a closest 

string matching the pattern P. 

 

Position weight matrices. 

Even the most complicated deterministic patterns 

cannot capture some subtle information hidden in  

a pattern. Assume we have a pattern that has C as  

the first letter in 40% cases and G as the first letter in 60% 

cases. The ambiguous symbol [CG] gives the same 

importance to both nucleotides. It is so important  

in strong patterns, but it may be important in weak patterns, 

where we need to use every piece of information  

to distinguish the pattern from a random sequence. 

The simplest type of probabilistic pattern is 

position-weight matrix (PWM). PWMs are also 

sometimes called position-specific score matrix 

(PSSM), or a profile (however profiles are often more 

complicated patterns, allowing gaps). PWM is a simple 
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ungapped pattern specified by a table. For each pair 

this table contains information about (position; 

character) and the relative frequency of the character at 

that position of the pattern (see Fig. 2 for an example). 

Assume that the pattern (i.e. PWM) has length k 

(number of columns of the table). The score 

of a sequence segment x1 ... xk of length k is: 

k
i

ii 1

A[x ,i]

f (x )=

∏  

where A [ x i , i ] is an entry of position weight 

matrix corresponding to position i of the pattern and 

character c and f(c) is background frequency of 

character c in all considered sequences. This product 

represents odd-score that the sequence segment x1 ...xk 

belongs to the probability distribution represented by the 

PWM [22]. In order to simplify computation of the score 

we can store log-odd scores i

i

A[x ,i]
log

f (x )
 in the table, 

instead of plain frequencies A[c,i]. Then the following 

formula gives us log-odd score instead of odd  

score (A’[c, i] is an entry of the table containing log-

odd scores): 

k

i

i 1

A [x ,i]
=

′�  

Position-weight matrices can be visualized in the form 

of sequence logos [23] (see Fig. 2). Each column of  

a sequence logo corresponds to one position of the 

pattern. Relative heights of the characters in one column 

are proportional to the frequencies A[c,i] at the 

corresponding position of the pattern. The characters are 

displayed in an ordered manner according to their 

frequency, with the most frequent character on top. 

Each column is scaled so that its total height  

is proportional to the information content of the position, 

computed as 

A[c,i]
2 2

c

log A[c,i] log
Σ

+�  

The value of 2log
Σ

 is added in order to obtain 

positive values, where this value depends on the size of 

alphabet �. Sequence logos were further improved by 

[24] to take background distribution into account, and  

display characters that occur less frequently than 

expected upside down. 

PWM with relative frequencies 

A 0.26 0.22 0.00 0.00 0.43 1.00 0.11 

C 0.17 0.18 0.59 0.00 0.26 0.00 0.35 

G 0.09 0.15 0.00 0.00 0.3 0.00 0.00 

T 0.48 0.45 0.41 1.00 0.00 0.00 0.54 

 

PWM with log-odd scores (using f(c) =(1/4)) 

A -3.94 -4.18 -� -� -3.22 1.00 -5.18 

C -4.56 -4.47 -2.76 -� -3.94 0.00 -3.51 

G -5.47 -4.74 -� -� -3.74 0.00 -� 

T -3.06 -3.15 -3.29 -2.00 -� 0.00 -2.59 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Position weight matrix of vertebrate branch point  

in form of a table and corresponding visual representation  

as a sequence logo. The sequence logo was created using on-line 

software at http://www.cbs.dtu.dk/gorodkin/appl/slogo.html. 

 

A quick look at a sequence logo reveals most 

preserved positions, consensus characters at all positions, 

etc. Notice that size of the characters in different 

columns cannot be directly compared. 

 

Stochastic models 

All types of patterns discussed so far are explicit  

in a sense that the user can easily see important characteristics 

of the occurrences of a pattern. Sometimes it is 

advantageous to represent a pattern in a more implicit 

form, usually as some discrimination rule, which decides 

whether a given sequence is an occurrence of the 

modeled pattern or not. Such a discrimination rule can be 

based on some stochastic model, such as Hidden Markov 

Model (HMM), or can employ machine learning methods, 

for example neural nets, and etc. It is possible to argue 

whether such rules constitute a pattern at all, but obviously 
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they can be trained (In case of pattern discovery) and 

then they can be used for discrimination (In case of pattern 

matching). Therefore they are applicable in pattern-related 

tasks such as protein family classification, binding sites 

discovery, etc. In some cases (such as HMMs with simple 

topology) it is even possible to obtain some information 

such as relative frequencies of characters at individual 

conserved positions about a modeled pattern. 

 

Type of Algorithms for Finding Patterns 

Many computer science problems related to pattern 

discovery are provably hard; therefore one cannot hope 

to find a fast algorithm which would guarantee to find 

the best possible solution. Therefore many approaches 

are based on exhaustive search with algorithms that 

may run in exponential time in the worst case. However 

these programs often use sophisticated pruning techniques 

that make the search feasible for typical input data. 

 

Enumerating all patterns. 

The simplest approach to pattern discovery is  

to enumerate all possible patterns satisfying constraints 

given by the user, for each pattern find its occurrences 

in input sequences and based on this occurrences 

assign score or statistical significance to each pattern. 

Then we can output patterns with highest score or  

all patterns with scores above some threshold. 

 

Application of enumerative method. 

Many protein binding sites in DNA are actually 

short ungapped motifs, with certain variability. They 

can be modeled quite well with simple patterns allowing 

small number of mismatches. Therefore we can apply 

exhaustive search to find this type of binding sites. 

Recent examples of this approach can be found in [25, 26]. 

In both papers authors use straightforward enumeration 

of all possible patterns and concentrate more on estimating 

statistical significance of their occurrence. [25] tries  

to find a pattern that appears in several copies in most 

sequences (GATA box). [26] allows mismatches and 

tries to find statistical significance of the given number 

of occurrences of the pattern with mismatches. 

 

Enumerating gapped patterns. 

In some contexts it is more reasonable to search for 

patterns with gaps. Example of such system is MOTIF [27]. 

Pruning pattern enumeration. 

If we want to find longer or more ambiguous 

patterns, we cannot use straightforward exhaustive 

search. Assume that our aim is to find a long ungapped 

pattern occurring possibly with some mismatches in  

at least K sequences. We can start searching from short 

patterns (for example patterns of length 1) that appear 

in at most K sequences and extend them until the 

support does not go below K. In each step we need  

to extend the pattern in all possible ways and check 

whether the new pattern still occur in at least K 

sequences. Once we get a pattern that cannot be 

extended without loss of support, this pattern is maximal 

and can be written to output. Examples of this strategy 

include Pratt algorithm and TEIRESIAS algorithm 

[28]. Both programs find patterns allowing gaps. 

 

Exhaustive search on graphs 

Assume we have t sequences of length n, and we 

want to find a pattern of given length L which occurs 

in at least q sequences with at most d mismatches. 

Then if we tae two occurrences of such a pattern, they 

will differ in at most 2d positions because they both 

differ from the original pattern in at most d positions. 

The idea is to make a graph t partite such that each part 

has n-L nodes (subsequence with L-length) and then 

there is an edge between two nodes in different parts  

if two nodes differ at most 2d positions. After making 

graph, the problem would be transformed to finding  

a q-clique in the graph [29]. 

 

Iterative heuristic methods 

So far we have mainly described algorithms that 

guarantee to find the best pattern. However for more 

complicated types of patterns we cannot implement 

such expensive methods. Thus we have to use heuristic 

approaches that do not necessarily find the best pattern, 

but may conveniently converge to a local maximum. 

 

Gibbs sampling 

Lawrence et al. Presented a heuristic algorithm  

for pattern discovery based on so called Gibbs 

sampling method. In the simplest version of this 

method, we are looking for the best conserved 

ungapped pattern of fixed length L in the form of 

position weight matrix assuming that the pattern o 
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ccurs in all sequences. The algorithm worksin 

iterations. The algorithm starts by selecting random 

subsequence of length L from each input sequence. 

These subsequences will form our initial set of occurrences. 

Then it would be possible to compute a position 

weight matrix characterizing the pattern from this 

weight matrix will be computed based on all occurrences 

except i’th occurrence. Let’s denote this position 

weight matrix P. Then each subsequence of sequence i 

of length L is selected, and a score of this subsequence 

is computed according to matrix P. One of the 

subsequences that has the best score is chosen 

afterwards. The algorithm must repeat until for each of 

the n iterations, information content position weight 

matrix becomes lower than previous step [30]. 

 

Expectation maximization 

Lawrence & Reilly used a simple learning algorithm 

called expectation maximization (EM) algorithm.  

The purpose of the algorithm is to estimate parameters of 

the stochastic model of the pattern, which occurs once at 

an unknown position in each sequence from the given 

family of sequences. The position weight matrix is 

used as an underlying stochastic model in [31]. 

 

Hidden Markov models 

Hidden Markov Models (HMMs) can be used as  

a model of a family of sequences. For detailed description of 

HMMs and related algorithms see [32]. There are three 

issues, which need to be addressed, when using HMM as 

a representationof a sequence family: 

 

• Topology of HMM. 

Topology specifies general layout of the model, 

which we use to represent a sequence family. 

 

• Training process. 

The learning process is needed to estimate the 

parameters of the model so that the sum of scores of 

sequences in the family is optimized. 

 

• Search for sequences. 

The searching process should allow us to distinguish 

between the sequences, that belong to the family and 

sequences, which do not. 

Support Vector Machines 

����������	
��
��������������	������ 

Support vector machines are supervised learning 

methods based on structural risk minimization which 

are proven to be a powerful means of classification 

with applications in bioinformatics. The introduction 

of SVM by Vladimir Vapnik [33], Cortes & Vapnik 

started a new branch of pattern recognition algorithms 

based on statistical learning theory [34]. Similar to variety 

of other supervised learning methods, SVM is used to 

solve complex problems for which there is no model to 

map input data to output data. Indeed, establishment of 

a new paradigm for estimating the functional dependencies 

from data paved the way for modern statistical learning 

approaches. According to this paradigm, in order to 

estimate dependency from data, it is sufficient to know 

some general properties of the set of functions to which 

the unknown dependency belongs. In this sense, SVMs 

learn the dependency solely based on the training data 

and without having predefined information such as 

probability distribution of input data or information 

about the structure of the dependency [35]. 

Although SVM can be used to classify linear data 

sets, they are essentially used to classify two sets of 

vectors which are nonlinearly separable in n-dimensional 

space. The basic idea behind the classification is that 

input vectors are mapped to a high dimensional space 

called feature space through a nonlinear function  

so that the data becomes linearly separable in this space. 

This way we transform the problem to a linear problem 

of finding a n-1 dimensional hyperplane which  

can separate our n-dimensional vectors in feature space. 

This plane is called a linear classifier. Although many 

hyperplanes are available with mentioned property, the 

desired plane is one with maximum distance from  

the both set of vectors. This way we can achieve the maximum 

separation (margin) between the two classes. In this sense, 

our classification problem is reduced to an optimization 

problem to find the optimal hyperplane with maximum 

margin. SVM solutions are obtained from quadratic 

programming problems which compute a global solution 

and are not discussed here. 

An important and unique feature of this approach  

is that the solution is based only on those data points, 

which are at the margin. These points are called support 

vectors. Another important advantage of the SVM  
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Is that it is not necessary to implement the nonlinear 

transformation and to determine the separating 

hyperplane in the possibly very-high dimensional 

feature space, instead a kernel representation can be used, 

where the solution is written as a weighted sum of the 

values of certain Kernel function evaluated at the 

support vectors [36]. 

In the following we’re going to explain different 

classification problems and explain how a SVM can be 

solved as a quadratic programming problem. 

 

Linear maximal margin classifier 

The simplest SVM which only classifies linearly 

separable data is called maximal margin classifier. 

Consider the input, x={x1,x2,…,xi}a binary 

classification function  f will return a positive value for 

the inputs which belong to the positive class and return 

a negative value for the ones belong to the other class. 

In case f is a linear function of x ∈  X, this separation 

is actually done by a hyperplane that splits the training 

samples into two corresponding parts. The following is 

a formal definition of a training set: 

S={(x1,y1), (x2,y2),…, (xi,yi)} ⊆ (x×y)
i 
  x ⊆ R

n
  y={1,-1} 

X is a representation of input space and Y represents 

the domain of the output. And is the number of examples. 

We can write function f(x) according to training set  

as follows: 

( )
n

i i

i 1

f (x) w x b w x b
=

= × + = +�  

where (w,b) ∈ R
n
 ×R are parameters that control 

the function and must be learned from the training data. 

In the following figure, a hyper plane is demonstrated. 

As it can be seen, vector indicates the normal vector of 

the plane, is the vector which decides displacement of 

the plane from the origin. 

Although many hyperplanes can be found that split 

two data sets, our aim is to find the hyper plane that 

provides the largest margin. In the following figure, 

two different hyperplanes and their margins are 

demonstrated. As it is demonstrated the hyperplane 

with the largest margin provides a more acceptable 

classification of data sets with minimum risk of classifying 

wrong data. The points which lie on a margin are called 

support vectors. 

 

 

 

 

 

 

 

 

 

 

Fig. 3: A linear classifier which separates twpo classes of 

training data. Vectors b and w are visualized in this picture. 

Photo taken from [37]. 

 

As we can see in the figure the dashed line is the  

separation line for which the f(x)=0 After the machine 

learned the parameters w which can be interpreted as 

weights and b which is the bias, it can generalize the 

unseen pattern xp using the decision function as follows: 

h(x) 0 sign(f (x))= =  

Where “o” is the notation for the output. Note that 

both i and f(x) belong  n+1 to dimensional space.  

We define the hyperplane f(x)=0 as separation boundary 

which exists in the n-dimensional space as input vectors 

does. In the following figure we can see that many 

separating planes exist for a given set of inputs. Indeed, 

given function f(x) with parameters (w,b), all the 

hyperplanes with parameters (kw,kb) where is a positive 

value, are acceptable separation hyperplanes. Since 

(w,b)and (kw,kb) define the same separation boundaries, 

we have to define notion of canonical hyperplane  

as follows: 

imin (w.x ) b 1+ =  

This implies that for every support vector the value of  

f(x) is either 1 or -1 which means that the margins for our 

hyperplane are 1 and -1. Another interpretation of this 

situation is that for canonical hyperplanes the values of 

and are equal for support vectors as it is shown in the 

following figure. 

The numbers of canonical hyperplanes which  

can separate the data correctly are far smaller than numbers 

of hyperplanes. However, it is necessary to find the 

optimal canonical hyperplane which provides the 

maximal margin. In fact, in a search for a classification 
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Fig. 4: This figure demonstrates two different separating lines with different margins for a set of training data. It is obvious that 

the line in the right figure provides a wider margin than the left one and thus is more desirable. (Photo taken from [38]). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: This photo demonstrates the difference between canonical separating line and other separating files.  

(Photo taken from [38]). 

 

function, a hyperplane with maximal margin is desirable 

for us since it has lower risk of misclassification and a 

canonical hyperplane is desirable because it will make 

the search for support vectors easier. 

The length of margin M of a canonical hyper plane 

can be easily calculated and is 

2
M

w
=  

From the above equation it can be inferred that by 

minimizing the norm of we can maximize the margin M. 

Since  2 2 2
1 2 nw w w ... w= + + + so   maximizing   w

 

would have the same effect as maximizing w  subject  

to inequality constraints introduced later which lead us 

to solving the classical quadratic programming problem. 

The following is the definition of our optimization 

problem: Given a set of training data 

S={(x1,y1) , (x2,y2),…, (xi,yi)} ⊆  (x×y)
i 
  x ⊆ R

n
  y={1,-1} 

In order to find a maximal margin hyperplane we 

have to solve the following problem: 

minimize              (w,w) 

subject to              yi ((w,x) +b � 1 )  i= 1…t 

In optimization problems, Lagrangian Multipliers is 

a method to find the exterma of function subject to one 

or more constraints. The following is the primal 

lagrangian of our problem: 

t

i i

i 1

1
L(w,b,a) (w.w) a [y ((w.x) b) 1]

2 =

= − + −�  

where ai are lagrangian multipliers. We now show 

Separation line , i.e., 

decision boundary 

Separation line , i.e., 

decision boundary 

Smallest  

margin M Class 1 

x2 x2 

Class 1 

x1 x1 

The two dashed lines represent decision 

functions that are not canonical 

hyperplanes. However, they do have 

the same separation boundary as the 

canonical hyperplane here. 

The decision function is a (canonical) hyperplaned (x, w, b). 

For a 1-dim input, it is a (canonical) straight line. 

The indicator function if = sign (d(x, w, b)) is a step-wise 
function . It is an SV machine output o. 

Feature x1 

The decision boundary. For 

a 1-dim input, it is a point 

or, a zero-order hyperplane. 

d (x, k1w, k1b) 

2 



Iran. J. Chem. Chem. Eng. Mining Biological Repetitive Sequences ... Vol. 29, No. 4, 2010 
 

13��

how to transform a lagrangian to its dual form. A dual 

representation of a Lagrangian is another form of the 

problem which is easier to solve than the primal form 

and is more convenient when using kernel functions. 

The dual of a lagrangian is calculated by differentiating 

the primal form with respect to w and b 

t

i i i

i 1

L(w,b,a)
w y a x 0

w =

δ
= − =

δ
�  

t

i i

i 1

L(w,b,a)
y a 0

b =

δ
= =

δ
�  

which results in 

t

i i i

i 1

w y a x
=

=�      ,     
t

i i

i 1

y a 0
=

=�  

The first result implies that we can write vector w 

as a linear combination of training points.  

By substituting above equations in the primal form we 

will have the dual form as follows 

t t

i i 2 i 2 i 2

i 1 i 1

L(w,b,a) a y y a a (x .x )
= =

= −� �  

Now our problem transformed to solving  

the following quadratic problem: 

Maximize               
t t

i i j i j i j

i 1 i, j 1

w(a) a y y a a (x .x )
= =

= −� �  

Subject to                     
t

i i

i 1

y a 0
=

=�         ai �0 , t=1,…,t 

The solution to the stated problems is a set of 

parameters indicating vector w which constitutes the 

maximum margin hyperplane. To calculate vector  

b of the hyperplane we must refer to the primal form of 

the lagrangian. 

 

Nonlinear Classification 

As it was mentioned before, the essential application 

of SVMs are in nonlinear classification. Yet, the 

significance of the method explained above is in that  

it can be easily extended to nonlinear classification. In order 

to do so, we can make use of kernel representations 

which map the input vectors x to vectors (x)φ  of 

a high dimensional space called feature space  

to increase the computational power of linear machines. 

As a result of this mapping, it is possible to solve 

nonlinear problem of classifying vectors linearly by 

applying linear SVM formulation on vectors (x)φ  in 

the feature space. This will lead to solving a quadratic 

programming problem with similar constraints on (x)φ . 

An advantage of this method is that the dual 

representation of the problem makes it possible  

to perform the mapping implicitly. 

If 1x Fφ →  is a nonlinear mapping from input 

space to feature space then the separator hyperplane 

we’re looking for would be of the form 

n

t t

t 1

f (x) w (x)
=

= φ�  

As we saw in previous section vector w can be 

written as the linear combination of training points 

which is 
t

i i i

i 1

y a x
=

�  which allows us to rewrite the 

formula in its dual 

form: 

n

i i i

i 1

y a ( (x ). (x))
=

φ φ�  

This implies that decision function h(x) can be 

calculated by having inner products of training points 

and unseen points. One of the problem we face in this 

kind of machines is the problem of choosing a mapping 

function which result in a good separating hypersurface. 

Another problem is calculating the product of 

i(x ). (x)φ φ  which could be a formidable task considering 

probable large dimensions of the feature space. 

Fortunately, a set of function called kernel functions 

can directly calculate the inner product i j(x ). (x )φ φ  by 

only having xi and xj as their inputs. A kernel K, is  

a function on space X , such that for every xi , xj∈X. 

An immediate advantage of using kernel functions 

is that there’s no need to choose the mapping function  

φ and calculate the mapped points i(x )φ  explicitly. 

Since decision 

Function h(x) does only need the inner products of 

i(x ). (x)φ φ  we could directly calculate them by means 

of K(xi,xj) Thus kernel functions make it possible to 

train SVMs which operate in high dimensional spaces 

and avoid computational problems of high 
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Fig. 6: This table contains some of the popular Kernel 

functions [38]. 

 

 

dimensionality. Besides we don’t even have to know 

the underlying mapping (x)φ . 

We can rewrite our classifier as follows: 

t

i i i

i 1

f (x) y a k(x .x)
=

=�  

The learning process in a nonlinear machine is 

similar to the method used in linear machines. The 

dual Lagrangian for a given mappingφ would be: 

t t

i i j i j i j

i 1 i, j 1

L(w,b,a) a y y a a (x ) (x )
= =

= − φ φ� �  

which can be written in terms of K(xi,xj) : 

t t

i i j i j i j

i 1 i, j 1

L(w,b,a) a y y a a K(x , x )
= =

= −� �  

Subject to       
t

i i

i 1

y a 0
=

=�    ai �0 , t=1,…,t 

This is the problem of finding the optimal separating 

hyperplane in the features space. The following table 

contains some of the popular kernel functions: 

 

Fuzzy support vector machines 

Concept of fuzzy states from Zadeh’s definition is 

commonly used definition for uncertain conditions. 

Crawling through absolute true to absolute false is what is 

used here to adapt Support Vector Machines (SVM). 

As mentioned, SVM primarily introduced for two class 

classification; moreover, a multi-class classification  
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: The black colored area in left picture represents 

unclassified areas, where these areas are covered by fuzziness 

model of SVM. 

 

method have been proposed that via pair wise two-class 

classification tackled multi-class classification [39-41]. 

Thereafter, to solve multi-class classification problem 

Fuzzy SVM has been introduced. Assuming fuzzy 

class ID for members of a SVM’s training set is one of 

the important propensities to use fuzziness concept on 

multi-class classification where as epicted in Fig. 7, 

using fuzziness concepts yields to covering whole of 

space but conventional SVM process remains some 

unclassified portions [41, 42]. 

In summary, applying fuzziness to support vector 

machines leads to making a flexible (as fuzzy functions), 

practical, and precise (as SVM methods [43]) tool. 

This combined approach can be useful in discovering 

and annotating genome sequence in structural repeated 

subsequences. 

 

ANNOTATING STRUCTURAL REPETITIVE 

SEQUENCES VIA FUZZY SUPPORT VECTOR 

MACHINES 

So far, different approaches have been introduced 

to tackle the problem of pattern annotating automatically. 

But as issued in [44] this problem is exhaustively 

unclear and there is not a efficient enough algorithm 

for it. This assumption comes from two biological 

facts; during evolution process nucleotides are mutated 

and all kind of structural repetitive sequences  

are not discovered yet. Some works have been 

performed to present approximate algorithms to reduce 

effects of mutated nucleotides [45] or by presenting 

self trained algorithm discover non-discovered 

structural repeated subsequences [46]. Another reason that 
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should be considered is subsequences similarity upon 

their functionality, where considering this reason needs 

some pre-information about each significant 

subsequence. To gather these information significant 

subsequences should be determined first. Indeed, this is 

our fundamental problem and by solving this problem 

the problem of finding structural repeated 

subsequences is resolved. Yet, this loop makes 

problems unsolvable. In the following, the last reason 

is neglected and context based repeated subsequences 

are considered. 

In our previous job we had determined structural 

repeated subsequences [41] via support vector machines 

method, but as it was mentioned combining this method 

with fuzziness concept can increase the accuracy and 

yield to much better results. 

 

CONCLUSION 

As mentioned in section of biological aspect, 

transposable elements are divided to more than two 

classes-considering subclasses-, therefore some kind of 

multi-class classification SVM is needed. Proposed 

n(n-1)/2 pair wise multi-class classification problem 

which was the first step of combining multi-class 

classification SVM and fuzziness concepts [15]. Also 

some other approaches were introduced by combining 

fuzziness and SVM concepts to solve the problem of 

unclassified regions which is problem of conventional 

SVM [36]. By combining the proposed methods in [37]  

-for converting the problem of structural repeated 

subsequences from biological systems to a problem in 

support vector machines - and method proposed  

by [15] -to solve multi-class classification via fuzzy 

support vector machines-, the problem of identifying 

structural repetitive subsequences in biological 

systems can clearly be solved. 

The higher-order structure of DNA, including 

hairpin turns, bending and curvature, and precise 

chromatin topology, could provide novel metadata 

needed to explain genome complexity [41]. Recent 

data also shows that promoter regions are significantly 

more curved than coding regions or randomly 

permuted sequences [43]. Tandem repeats are 

ubiquitous sequence features in both prokaryotic and 

eukaryotic genomes. A direct or tandem repeat is the 

same pattern recurring on the same strand in the same 

nucleotide order. Tandem repeats play significant 

structural and functional roles in DNA [41]. These 

repeats also play a regulatory role when found near 

genes and perhaps even within genes. Short tandem 

repeats are used as a convenient tool for the genetic 

profiling of individuals or for genetic market analysis 

in mapping studies [41, 42]. Today it has been proved 

that the function of a genes in genome is not a gene-

only role but they act together and form a network of 

genes playing in a biological process. Many attempts 

have been done to bring these information together and 

build different biological networks [44,45]. Gene regulatory 

networks are examples that are modeled and analyzed 

in order to gain insight of their exact functions [42]. 
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