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ABSTRACT: In this work, the degradation of Nitro toluene (NT) which is one of the constituents of 

petrochemical wastewater was explored by MnO2/Clinoptilolite/O3 process. The Box-Behnken 

experimental design was used and the effect of some operating parameters such as concentration of 

pollutant, initial pH, and amount of MnO2/CP was inspected. A radical mechanism with the formation 

of an anion radical (𝑂2
•−) before hydroxyl radical is proposed for describing the interaction between 

ozone and MnO2/CP. The optimum conditions predicted by the model were as the following: 

[MnO2/CP] = 0.45 mg/L, pH at 8.5, ozonation time at 48 min and [NT] = 30 mg/L. In optimum 

condition, the removal of NT and Chemical Oxygen Demand (COD) was 99.8, and 74% respectively. 

The removal of NT in the ozone along with MnO2/CP was higher than the sum of the separate 

processes of single adsorption of catalyst (6%) at 0.6 mg/L and single ozonation(79%). 

 

KEYWORDS: MnO2/CP nanocatalyst, Clinoptilolite Zeolite, Degradation, Nitro toluene (NT), 
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INTRODUCTION 

The wastewater generated from Bandar Imam 

petrochemical company in Iran contains some Aliphatic 

and aromatic derivatives. Certain amounts of aromatic 

components are wasted during a process that contains  

a wide range of non-biodegradable pollutants that cause 

environmental problems [1]. Nitro toluene is probably 

considered carcinogenic to humans, based on the 

international agency for research on cancer [2]. The 

classical treatment methods have high operational costs, 

long reaction time, and secondary pollution [3], so the use 

of Advanced Oxidation Processes (AOPs) is essential[4-6]. 

AOPs such as UV/H2O2, UV/O3, MnO2/CP/UV,  

 

 

 

Fenton’s reagents and catalytic ozonation include  

the production of non-selective oxidizing agents such as 

hydroxyl radicals, for degradation of toxic and refractory 

pollutants in different wastewaters [7]. Ozone is a 

powerful oxidant and is used greatly in the water treatment 

process [8–9]. But in most cases, it has been reported that 

ozone cannot degrade organic pollutants completely and 

sometimes generates toxic intermediates [10]. 

In these conditions, catalytic Ozonation has been 

fascinating the increasing notice as a result of its higher 

efficiency in the degradation and mineralization of organic 

pollutants and lower negative effect on water nature [11].  
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Unsupported and supported metals and metal oxides are 

the most ordinarily used catalysts for the Ozonation of 

organic contaminants in water. They can accelerate the 

Ozonation process for degradation of a wide range of 

different contaminants [11–14]. MnO2/CP-catalyzed 

ozonation was more effective for the removal of some 

pollutant than ozone alone. The comprehensive 

mechanism of catalytic ozonation is not clear up to this 

time and many readings have been prepared so far but it is 

not absolutely clear and this object is one of the gaps in 

catalytic ozonation. The effect of MnO2/CP on ozone 

decomposition to yield hydroxyl radicals was not clear. 

Some investigator suggested mechanisms based on non-

radical pathway that form hydroxyl radical. A number of 

mechanisms are offered, but the direct creation of hydroxyl 

radicals from ozone disintegration on the surface of 

MnO2/CP or indirect production as a result of secondary 

reactions were still unfamiliar [15]. Rosal et al. [16-17] 

inspected the degradation of Clofibric acid by catalytic 

ozonation on titania. It was suggested that the adsorption 

and the subsequent reaction of pollutants on catalyst sites 

are responsible for the progress of catalytic ozonation. 

Moreover, heterogeneous Catalytic Ozonation  

Process (COP) is an exciting technique for treatment of 

various wastewaters because of its minimum cost, 

probable recovery of solid catalyst, and also lowest 

production of secondary pollution. In fact, this method 

combines the molecules of ozone with the adsorptive and 

oxidative properties of metal oxide catalysts to get 

mineralization of different organic contaminants at 

ambient temperature [18]. Catalytic mechanisms are 

approved for the COP, comprising acceleration of the 

production of hydroxyl radicals, complex catalysis, and 

the sorption of organic pollutant and ozone molecules on 

the surface of catalyst [19-20]. 

Magnesium Oxide, as a heterogeneous catalyst, has 

very good ability for destruction of different organic 

pollutants. It is cost-effective, harmless and also 

environment-friendly compound.  

The novelty of this project is that, no study has been 

done on degradation of Nitro toluene by catalytic 

ozonation with MnO2/CP up to this time. In this work, 

degradation of NT as an aromatic pollutant was studied by 

O3/MnO2/CP process and the effect of pH, initial 

concentration of NT, and amount of MnO2/CP for higher 

degradation of NT was investigated.  

EXPERIMENTAL SECTION  

Materials 

Nitro toluene (NT), HCl and NaOH, potassium iodide 

and sodium thiosulphate were of reagent grades and 

provided from Merck. Nano sized MnO2/CP was lower 

than 50 nm and synthesized previously. Ozone was 

manufactured in an Ozone generator fed by dry oxygen 

and all components were used as received without 

additional purification. Distilled water was used during 

this study.  

 

Apparatus 

The experiments were performed in a semi batch (batch 

for MnO2/CP and NT and continuous for ozone) reactor. 

The pure oxygen, from a pressurized capsule, was entered 

into Ozone Generator (214V and 0.39A) from ARDA 

companies of Iran. The reactor was prepared with a water-

flow jacket coupled to a thermostat (BW20G model from 

Korean Company) for regulating temperature fixed at 25ºC 

which is presented in Fig.1. The pH was measured by pH 

Meter PT-10P Sartorius Instrument Germany. The 

advancement in the degradation of the NT was recorded by 

a high performance liquid chromatography (Knauer, 

Germany) equipped with Spectrophotometer (Platm blue 

Germany). A reverse phase column filled with 3 μm 

Separon C18 and it was 150 mm in length and 4.6 mm  

in diameter. The Isocratic technique with accustomed pH 

to 2.5, using orthophosphoric acid and a solvent mixture of 

acetonitrile and deionized water (60:40% v/v) at room 

temperature at a flow rate of 1 ml/min was employed.  

In all experiments, the suspension was centrifuged and 

filtered to separate the catalyst particles.  

 

Catalytic Ozonation tests 

About 2 L of aqueous solution holding identified 

concentration of NT and nano MnO2/CP were mixed 

absolutely in the reactor. A combination of O3/O2 was 

made by Ozone generator and entered to the bottom of the 

reactor by a porous diffuser for saturating solution with O3 

and better reaction between ozone, MnO2/CP and the 

contaminant. The concentration of gaseous ozone was 

measured by the iodometric method using 2% neutral 

buffered potassium iodide for ozone trapping and sodium 

thiosulfate as a titrant [21]. In all runs, the flow rate of 

O3/O2 mixture was kept constant at 0.5 L/min with the 

concentration of ozone at about 20 mg/ L.  For measuring 
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Fig. 1: Schematic diagram of the experimental set up. Notes: 1-Pure oxygen, 2- Shut off valve, 3-Gas flow meter,  

4-Ozone generator, 5-Washing bottle, 6-Reactor, 7- Magnetic stirrer, 8- Ozone diffuser,  9- Magnetic bar,  

10- Sampling port, 11-Cooling water supply from thermostat 12- Cooling water return to thermostat. 

 

the consumed ozone, the outlet gas of reactor was bubbled 

through a KI (2%w) tamponed solution for determining not 

reacted ozone, where the excess ozone reacted with potassium 

iodide solution based on the following equation (Eq. (1)): 

O KI H O I KOH O    3 2 2 22 2                                 (1) 

The formed iodine was titrated by standard Sodium 

thiosulphate in the presence of starch as an indicator.  

The amounts of not reacted and reacted ozone were determined 

and the value of ozone in tail gas was gained, respectively. 

The residual of ozone in aqueous solution was valued by  

a spectrophotometer using the Indigo method [22].  

Samples were taken at different intervals and filtered 

to remove MnO2/CP particles. The concentration of NT 

was determined by Spectrophotometric at 273 nm. The 

HPLC and spectrophotometry methods gave parallel 

results and the difference between them was little that is 

corrected. The experiments were performed at the pH 

range of 4-10. The pH was adjusted only at the start of 

reaction by adding HCl (0.1 M) or NaOH(0.1 M). A minor 

decrease in pH was happened based on the production of 

intermediated acids.  

COD was measured by Colorimetric and the standard 

closed reflux method [23] and the absorbance of samples 

for COD was measured by spectrophotometer at 600 nm.  

The removal percent of NT and COD is given by  

the following equations (Eq.2-3): 

 
   

 
t

NT NT
Removal of  NT %

NT

 
  
 
 

0

0

100                  (2) 

 
   

 

COD COD
Removal of  COD %

COD

 
  
 
 

0

0

100         (3) 

Where [COD]0 and [NT]0 are the initial concentrations 

of COD and NT at the start of the reaction, and [COD] 

and [NT] are the amount of COD and concentration  of  NT 

at time t, respectively.  

 

RESULT AND DISCUSSIONS 

Experimental design and statistical analysis 

The Box-Behnken experimental design method was 

used to optimize the percentage of NT removal from the 

typical industrial wastewater. The effects of Manganese 

oxide concentration (𝐶𝐶𝑎𝑡), Ozonation time (𝑡), Nitro 

toluene concentration and acidity (𝑝𝐻) on NT removal 

were investigated to optimize the process. The input 

variables and their values were presented in Table 1. 

The Box-Behnken experimental design needs a smaller 

number of tests compared to all the response surface 

methodologies (RSM) [24]. The following model (Eq. (2)) 

was proposed for the response variable (𝑌) as a polynomial 

equation of independent variables. 

i i ij i j ii iY b b x b x x b ix       2
0                  (2) 
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Table 1: The range and levels of the variables. 

variables Symbol 
Range and levels 

-1 0 +1 

pH CpH 4 7 10 

MnO2/CP (Mg/L) CCat 0.2 0.4 0.6 

Ozonation time(min) t 10 30 50 

Nitro toluene(mg/L) NT 25 75 125 

 

Where 𝑏0 is a constant number, 𝜀 is the remainder of 

the equation, , 𝑏𝑖 is the slope of the variable, bii is the 

quadratic coefficient (i = 1,2,3,4) bij is a linear interaction 

between the input variables of xi and xj  (I = 1,2 and  

j = 1,2,3). Analysis of variance (ANOVA) was used to 

consider the significance of each variable in the polynomial 

equation (Eq. (2)) [25]. In the ANOVA, the level of 

significance or p-value was set at 0.05. The statistical 

significance of the second-order models was defined  

by F-value. When the calculated F-value is higher than  

the F-value in the table, the p-value will be much smaller; 

it designates the significance of the statistical model.  

The calculated F-value is obtained through dividing  

the mean squares of regression (involving linear, square, 

and interaction) by the mean squares of residual as follows 

(Eq.4)[26]: 

Reg. Reg. Reg.

Res. Res. Res.

MS SS / DF
F value

MS SS / DF
                                   (4) 

The residual degrees of freedom (𝐷𝐹𝑅𝑒𝑠.) is the total 

degrees of freedom minus the regression degree of 

freedom and regression degree of freedom (𝐷𝐹𝑅𝑒𝑔.)  

is the number of terms minus one [27]. The design  

of the experiments involves 27 tests; Table 2 shows  

the percentages of NT removal as well as the value predicted 

by the model.  

 

Modeling and optimization of NT removal in O3/ 

MnO2/CP process 

In this study, the effect of three independent variables 

on the response function was inspected using the BBD and 

RSM, to get the optimal conditions. The mathematical 

relation between the response and three significant 

variables is considered by a quadratic polynomial 

equation. The equation for the degradation of COD  

is presented as the following (Eq. 5):  

  pHRemoval of  NT % . X   107 25 29                       (5) 

pHcat time NT C. X . X . X . X   290 9 3 329 0 093 1 442  

Cat time NTC C C. X . X . X      2 2 279 8 0 03379 0 001752  

pH cat pH time. X X  . X  X 2 29 0 0050  

pH NT time cat. X X     . X X 0 01833 0 062   

cat NT time NT. X X     . X X0 063 0 00240  

The attained results from the BBD, with residuals for 

all runs are shown in Table 3. The equation in terms of 

actual factors can be used to make predictions about  

the response for given levels of each factor. Here, the 

levels should be stated in the original units for each factor.  

The significance of the coefficients was shown in 

Table 3. The Model F-value of 103.9 suggests that the 

model is significant. P-values less than 0.0500 designate 

model terms are significant. Values greater than 0.1000 

indicate the model terms are not significant. The linear 

terms; 𝐶𝑃𝐻, 𝐶𝐶𝑎𝑡, 𝐶𝑡𝑖𝑚𝑒, 𝐶𝑁𝑇 and their quadratic terms have 

a p-value of less than 0.01, thus they are very significant. 

However, the term of the binary interaction between  

the variables has a p-value of more than 0.05, which means 

that the interaction of variables is insignificant [28,29].  

In order to improve the model, the insignificant terms  

were eliminated as shown in Table 3.  

The “Lack of Fit Tests” pane matches residual error 

with “Pure Error” from replicated design points. If there is 

significant lack of fit, as depicted by a low probability 

value (“Prob > F”). As signified in the Table, the lack of 

fit was significant compared to the pure error since its p-

value (0.013) was lower than 0.05, revealing that  

the model was suitable for predicting NT removal efficiencies 

within the mentioned ranges of the process factors. 

The Predicted R² of 0.9918 is in realistic agreement 

with the adjusted R² of 0.9823; i.e. the difference is less 
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Table 2: Experimental design for three independent variables and their response. 

Run no. XpH Xcat Xtime XNT Exp. Pred. 

1 7 0.6 50 75 91.3 92.60 

2 7 0.4 50 125 78 80.21 

3 4 0.2 30 75 49.5 49.79 

4 10 0.4 30 125 80.0 79.89 

5 4 0.4 50 75 68 65.01 

6 7 0.6 10 75 47.3 47.64 

7 4 0.4 10 75 18.3 19.94 

8 4 0.6 30 75 58 55.81 

9 7 0.4 10 25 54 49.59 

10 10 0.4 10 75 49 52.99 

11 7 0.6 30 25 83.5 86.81 

12 7 0.4 10 125 42.0 40.54 

13 10 0.4 50 75 97.5 96.86 

14 7 0.4 30 75 85 85.2 

15 7 0.2 30 25 81 82.29 

16 7 0.4 50 25 99.6 98.86 

17 10 0.2 30 75 85 85.2 

18 7 0.2 10 75 45 44.87 

19 4 0.4 30 25 60 61.29 

20 7 0.2 30 125 72 71.71 

21 10 0.6 30 75 88 88.84 

22 7 0.4 30 75 85 84.99 

23 10 0.4 30 25 89 88.24 

24 7 0.4 30 75 85.6 85.2 

25 4 0.4 30 125 40.0 41.94 

26 7 0.2 50 75 88 88.84 

27 7 0.6 30 125 72 71.71 
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Table 3: ANOVA tests for quadratic models in the removal of NT by O3/MnO2/CP process (Continued). 

Model DF Adj SS Adj MS F-Value P-Value 

Linear 14 11258.2 804.15 103.9 0.00 

𝐗𝐂𝐏𝐇
 4 9698.3 2424.59 313.26 0.00 

𝐗𝐂𝐂𝐚𝐭
 1 3159.0 3159.01 408.14 0.00 

𝐗𝐂𝐭𝐢𝐦𝐞
 1 32.0 32.01 4.14 0.065 

𝐗𝐂𝐍𝐓
 1 5931.9 5931.85 766.4 0.00 

Square 1 575.5 575.47 74.35 0.00 

𝐗𝐂𝐩𝐇

𝟐  4 1496.8 374.2 48.35 0.00 

𝐗𝐂𝐜𝐚𝐭

𝟐  1 898.4 898.45 116.08 0.00 

𝐗𝐂𝐭𝐢𝐦𝐞

𝟐  1 54.3 54.33 7.02 0.021 

𝐗𝐂𝐍𝐓

𝟐  1 974.4 974.4 125.89 0.0 

Model 1 102.3 102.28 13.21 0.003 

2-Way Interaction 6 63.0 10.50 1.36 0.307 

𝐗𝐂𝐏𝐇
𝐗𝐂𝐂𝐚𝐭

 1 7.6 7.56 0.98 0.342 

𝐗𝐂𝐭𝐢𝐦𝐞
𝐗𝐂𝐩𝐇

 1 0.4 0.36 0.05 0.833 

𝐗𝐂𝐍𝐓
𝐗𝐂𝐏𝐇

 1 30.2 30.25 3.91 0.071 

𝐗𝐂𝐂𝐚𝐭
𝐗𝐂𝐭𝐢𝐦𝐞

 1 0.3 0.25 0.03 0.86 

𝐗𝐂𝐍𝐓
𝐗𝐂𝐂𝐚𝐭

 1 1.6 1.56 0.2 0.661 

𝐗𝐂𝐍𝐓
𝐗𝐂𝐭𝐢𝐦𝐞

 1 23 23.04 2.98 0.11 

Error 12 92.9 7.74   

Lack of  fit 10 92.6 9.26 77.2 0.013 

Pure error 2 0.2 0.12   

Total 26.0 11351.0    

Model Summary 

 
S 2R Radj

2  Rpred
2   

 2.78207 0.9918 0.9823 0.9523  

 

than 0.2. Adequate Precision calculates the signal to noise 

ratio. A ratio greater than 4 is required.  

The correctness of the model as illustrated in Fig. 2, 

compares the experimental values versus the predicted 

responses by the model in degradation of NT. It was observed 

that the predicted responses from the model are in 

agreement with the experimental data.  

 

Effect of catalyst amount on MnO2/CP/O3 process 

The influence of catalyst dose on the degradation of NT 

is showed in Fig. 3. In the non-catalytic ozonation process, 

the ordinary conversion of the NT was attained because the 

action of free radicals produced from self-decomposition 

of ozone was poor. It is satisfactory that ozonation of water 

also leads to the production of hydroxyl radicals over 

ozone breakdown [30]. The degradation proficiency  

of the NT was meaningfully increased in the presence of 

both ozone and catalyst. An exceptional feature of nano 

MnO2/CP is its extremely high surface area. It is clear that, 

the degradation of the NT was based on the action of some 

ozone absorbed species or free radicals shaped perhaps  

on the catalyst surface or in the aqueous solution. Catalyst 

amounts had a positive effect on NT removal  

in MnO2/CP/O3 process. But as showed in Fig. 3, 
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Fig. 2: Comparing the experimental and predicted value for the 

removal of NT in O3/MnO2/CP process. 

 
the removal efficiency was increased by an increase  

in catalyst dose from 0.2 to 0.4 mg/L. A further increase  

in catalyst amounts to 0.6 g/ L did not yield any 

significant increase in the degradation rate. Therefore 

1.2 g/L of catalyst was gained as an optimum 

concentration of MnO2/CP. 

 
Effect of pH on MnO2/CP/O3 process  

In MnO2/CP/O3 method, pH had two direct effects, one 

is ozone decomposition and another is surface charge and 

characteristic of MnO2/CP nano catalyst which has a direct 

effect on the adsorption of pollutant molecules [31]. The 

point of zero charge (PZC) of the MnO2/CP  

is reported at 7.0 [32] and this factor affects the absorption 

of pollutant on catalyst and it was determined  

by Potentiometric titration as explained by Halter [33]. 

Organic pollutants in neutral state may be adsorbed on the 

surface of catalyst if the surface is not charged near the 

pHPZC of the catalyst [34].  

The effect of pH on MnO2/CP/O3 process is shown  

in Fig.4. From the experimental results, it was obvious that 

during treatment, the best results were gained at a neutral 

pH. The influence of catalyst concentration on the removal 

of NT was sharp at neutral pH rather than acidic and 

alkaline pH. In neutral pH the catalytic ozonation is 

predominant, but in alkaline pH the only ozonation 

reactions is predominant. The surface properties and  

the electrostatic interactions between MnO2/CP and 

hydroxide ions in the solution were the main factors 

affecting the degradation of NT.  

Effect of initial concentration of NT on the removal 

efficiency 

The effect of initial concentration of NT on the 

efficiency of degradation in MnO2/CP/O3 was investigated 

over the concentration range from 25 to 125 mg/L and 

results showed in Fig.5. 

Results showed that the percent of removal was decreased 

slightly with an increase in NT dosage from 25 to 125 mg/L. 

When the initial dosage of the pollutant was high (125 mg/L), 

the number of available active sites were reduced and  

the production of hydroxyl radicals were decreased by NT 

molecules, because of their competitive adsorption on 

MnO2/CP surface.  

With an increase in the initial concentration of NT, 

active agents such as hydroxyl radicals produced from  

the process were reduced because they react with a large 

number of pollutant molecules [35]. When the 

concentration of NT increased, the surface of MnO2/CP 

was covered by pollutant molecules instead of ozone  

and subsequent production of active agents for destroying 

pollutant was reduced. But, when the number of pollutant 

molecules was very low, their collisions with active  

sites were reduced and degradation efficiency  

decreased [36]. 

 

Degradation of NT by MnO2/CP/O3 processes 

Ernst et al. [37] are offered that the dissolved ozone is 

adsorbed first on the catalyst surface during the catalytic 

ozonation with Al2O3, and then degraded rapidly, based on 

the existence of hydroxyl surface groups, the 𝑂2
•− was formed 

and it would result in the production of hydroxyl radicals 

by a series of reactions. Also Zhang et al. [38] suggested 

that 𝑂2
•− and hydroxyl radicals were created by ozone 

molecule with the hydroxyl group of catalyst. In this study, 

the dissolved molecular ozone was adsorbed on the 

MnO2/CP surface at first and then decomposed into 𝑂2
•−  

and 𝑂𝐻• quickly due to the presence of hydroxyl surface 

groups on the catalyst (Eqs.6, 7). Additionally, the shaped 

𝑂2
•−could support molecular ozone to decompose into 

hydroxyl radicals. Then the NT adsorbed on the surface  

of the MnO2/CP would be degraded by  𝑂𝐻• and molecular 

ozone (Eqs. 6, 7). As ozonation along with MnO2/CP can 

happen through either direct reaction with molecular ozone or 

indirect reaction with the produced hydroxyl radicals,  

the removal of the NT can be represented by the following 

simple reactions (Eqs.6-11) [39]: 
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Fig. 3: The counter plot of the interaction between catalyst 

concentration and pH on the removal of Nitro toluene. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4: The counter plot of the interaction between catalyst and 

Nitro toluene concentration on the removal of Nitro toluene. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4: The counter plot of the interaction between the time  

of ozonation and Nitro toluene concentration on the removal  

of Nitro toluene. 

O NT  int ermediate Prouct 3                                        (6) 

•OH NNT int ermediate Prouct                                      (7) 

• •O OH   HO   O   3 2 2                                                     (8) 

• •O HO   OH    O  3 2 22                                                    (9) 

• •O OH   HO   O  3 2 2                                                       (10) 

•HO   H O   O 2 2 2 22                                                         (11) 

It has been proposed that ozone can be adsorbed  

on a catalyst surface to produce various oxidizing species [40]. 

The proposed mechanism mentioned that ozone and 

organic molecules adsorbed on the catalyst surface 

simultaneously, ozone degrades on the metallic sites and 

produce the surface bond radical (𝑂2
•−), that they are more 

reactive than ozone and result in the production of 

hydroxyl radicals. Oxidation lasts through some oxidized 

intermediates progressively, while 𝑂2
•− radicals are 

continuously produced by dissolving ozone that is 

transferred to the catalyst surface. The attraction of the 

oxidation products to the surface of catalyst decreases and 

final degradation products repulse from the catalyst 

surface [41]. The NT removal rate in the ozone along with 

MnO2/CP was higher than the sum of the separate 

influences of single adsorption of catalyst (6%) at 0.6 mg/L 

and ozonation(79%).   

 

Optimization of operating conditions 

The percentage of NT removal can be high in some 

conditions. Using the Minitab software, the values of 

different variables were selected to maximize the 

percentage of NT removal. These optimal values, along 

with the percentage of NT removal, are shown in Table 4.  

The optimum conditions predicted by the model were 

as follows: the [MnO2/CP] = 0.45 mg/L, pH at 8.5, 

ozonation time at 48 min and [NT] = 30 mg/L. Under  

the predicted optimum conditions the removal efficiency 

of NT recommended by the software was 99.8%.  

 

CONCLUSIONS 

The combination of ozone and MnO2/CP catalyst has 

important effect on the removal of NT in aqueous solutions 

and based on the experimental results the following 

conclusions are obtained: In MnO2/CP/O3 technique,  
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Table 4. Optimal coditions of parameters and NT removal % . 

Parameters Unit Value 

pH  8.5 

MnO2/CP concentration mg/L 0.45 

Ozonation time min 48 

Concentration of NT mg/L 30 

Predicted NT removal % 102.6 

Experimental NT removal % 99.8 

 

the pH has two direct effects on the process, one is ozone 

decomposition and the other one is surface charge and 

properties of MnO2/CP nano catalyst. The removal of NT 

and COD were 99.8% and 74%, respectively at 48 min  

of reaction.  

The NT removal rate in the ozone along with MnO2/CP 

was higher than the sum of the separate influences of 

single adsorption of catalyst (6%) at 0.6 mg/L of catalyst 

and single ozonation(79%).  These experimental results 

confirmed the hypothesis that the removal of NT by 

O3/nano-MnO2/CP process followed a radical-type 

mechanism. The suggested mechanism mentioned that 

ozone and organic molecules adsorbed on the catalyst 

surface concurrently, ozone degrades and produce  

the surface bond radical (𝑂2
•−), that they are more reactive 

than ozone and lead to the production of hydroxyl radicals.  
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