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ABSTRACT: In this study, a novel integrated Hybrid Airlift Membrane Bioreactor (HAMBR) 

composed of oxic, anoxic and anaerobic zones was developed to simultaneously remove organic 

matter and nitrogen from real paper-recycling wastewater. The removal efficiencies of Chemical 

Oxygen Demand (COD), ammonium, nitrite, nitrate and Total Nitrogen (TN) for permeate  

and supernatant were in the range of 88-99%, 54-83%, 70-90%, 65-95% and 61-90%, respectively. 

In addition, the membrane fouling was evaluated by Trans-Membrane Pressure (TMP) monitoring 

during experimental period at a constant flux of 12 L/m2h, and the rate of TMP increase was  

1.75 mbar/day. The results showed that the hybrid airlift membrane bioreactor can be applied 

effectively to simultaneous removal of organic and nutrient from real wastewater and the 

performance of the membrane bioreactor was satisfactory in terms of resistance against membrane 

fouling phenomenon, which is an important parameter during HAMBR operation. 
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INTRODUCTION 

The increase in human population and the demand  

for industrial establishments have created many problems,  

 

 

 

such as over-exploitation of resources, which leads  

to the pollution of the environment. It has been estimated  
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that the pulp and paper industry is responsible for 50% of 

all wastes dumped into rivers. Water reclamation in pulp 

and paper industry has been emphasized due to 

consumption of a large amount of water in this area [1]. 

More than 250 chemicals have been specified in pulp and 

paper wastewater and their discharge into the environment 

can make important environmental problems [2, 3]. This 

type of wastewater is characterized by high levels of COD, 

Suspended Solids (SS), color, toxic chlorinated 

compounds, tannins, resin acids, heavy metals, sulphur 

compounds, lignin and its derivatives [4-6].  

Depending on the process used in pulp and paper mills, 

different types of treatment technologies, which are 

efficient and exclusively designed, have been evaluated to 

minimize the harmful effect of effluent on the environment [7-9]. 

However, the primary clarification, secondary and tertiary 

treatment, which can be categorized into physicochemical 

and biological processes, are the main methods in pulp and 

paper mills [10]. Although, biological techniques are 

economical and ecofriendly, treatment of wastes including 

non-biodegradable recalcitrant compounds mostly limits 

their broad application. Therefore, other innovative 

approaches, such as Advanced Oxidation Process (AOP), 

novel biodegradable polymeric flocculants, 

electrocoagulation and photo catalysis have been used 

to tackle this problem [11]. 

The conventional methods for treatment of paper mill 

wastewater consist of a balance tank, a first sedimentation 

tank, an anoxic-aerobic tank and a secondary 

sedimentation tank. In general, the conventional treatment 

cannot meet the water quality requirements for paper 

making process. Consequently, the final effluent includes 

more than 40% organics with low biodegradability in the 

total organic matter content. Therefore, the integrated 

membrane bioreactor has been used to treat the wastewater 

of paper mills [1, 12]. An MBR combines an activated 

sludge process with a physical separation by membrane. 

Compared with Conventional Activated Sludge (CAS) 

process, the above-mentioned technique has many 

advantages, including high efficiency, less sludge 

production, high disinfection ability and also small 

footprint [13]. One of the main advantages of  

a membrane bioreactor system is the complete biomass 

retention, which enables the handle of Sludge Retention 

Time (SRT) independently of Hydraulic Retention 

Time (HRT) [14].  

There have been some studies on the application  

of MBR process to treatment of wastewater in pulp  

and paper industry. It was reported that the HRT  

of 1.1 ± 0.1 days was an optimal value for COD removal 

and cake formation was the dominant mechanism of 

membrane fouling [15]. Dias et al. [16] used membrane 

bioreactor for treatment of kraft pulp mill foul 

condensates, and the results showed that the treatment 

at high temperatures was technically feasible and had 

acceptable potential for industrial applications. 

Nevertheless, membrane fouling phenomenon is  

a major drawback for the widespread application of MBR 

systems and has been extensively analyzed as a function 

of operation condition [17, 18]. In this phenomenon,  

the small and soluble particles penetrate inside  

the membrane and are adsorbed into the membrane 

pores along with other organic and inorganic matters, 

which decreases the permeate flux value to below the 

theoretical capacity of the membrane filtration and leads 

to a significant increase in the consumed operational 

energy [19-21]. Generally, fundamental membrane 

fouling can be developed over long term operation 

either by accumulation of particles on the membrane 

surface or by blockage of the pores. Although 

significant attempts have been made to gain a better 

understanding of the dominant fouling mechanisms, 

control of membrane fouling has been limited because 

of its complexity. Fouling is influenced by some factors, 

including membrane pore size, pollution loading rate, 

particle distribution, membrane material properties and 

operation conditions. In order to ensure the membranes 

have an efficient and long operational life, they should 

be cleaned with physicochemical techniques [21-24]. 

In aerobic MBRs, approximately complete 

reduction of organic matters and nitrification  

can be achieved, while for denitrification process,  

some modifications are needed, such as the addition  

of an anoxic tank prior to the aerobic tank, the modification 

of the reactor configuration including intermittent 

aeration and baffled membrane bioreactors [25, 26].  

It was reported tha t  hybrid membrane bioreactor 

systems, including sequential or alternating anoxic-

oxic zones, have been developed very successfully 

and activity of the sludge is maintained by various 

environmental conditions, resulting in effective 

removal of pollutants [27-29]. In general, evaluation 
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of integrated bioreactors which combine aerobic and 

anaerobic degradation pathways in a single reactor is 

important because they are cost-effective and 

efficient and have smaller footprints as compared  

to the sequential anaerobic-aerobic systems [30, 31]. 

The aim of this study is to evaluate the 

performance of HAMBR in terms of organic 

compounds and nutrients removal and in addition, 

analysis of membrane fouling during treatment of 

real paper-recycling wastewater.  

 

Paper-recycling wastewater  

The samples of paper-recycling wastewater used  

in this study were collected from Kahrizak paper mill 

located approximately 10 km far from Tehran, Tehran 

province, Iran. The process of wastewater treatment  

in this factory was sequencing batch reactor (SBR).  

The wastewater had COD of 1340-1780 mg/L and SS of 

1045-1275 mg/L. The wastewater also contained ammonia 

(NH4-N) and TN concentration of 31.2-53.7 mg/L  

and 137.5-173.5 mg/L, respectively. The pH value  

of the wastewater was 7.3-7.7. 

 

HAMBR reactor set-up and experimental process 

The configuration and operating conditions of 

HAMBR are all demonstrated in Fig. 1 and Table 1.  

The membrane bioreactor was operated for 40 days 

without discharging any excess sludge, except for small 

amounts (300 mL) for sampling and analysis. The flux 

was kept constant through frequently adjusting  

the rotation rate of the suction pump, and water level 

sensor was used to maintain the constant water level  

in the HAMBR. 

There was a recirculation pump which worked with 

recirculation of around 400% of the inflow. A Kubota 

A4, a flat sheet microfiltration membrane made of 

chlorinated polyethylene (area 0.106 m2, pore size 0.4 µm), 

was used in the bioreactor. Air was supplied through  

a diffuser under the flat sheet membrane module in 

order to provide oxygen for activated sludge, the driving 

forces for the circulation of the suspension inside  

the HAMBR and the membrane scouring. The pressure 

gauge was installed between the membrane and  

the effluent pump in order to monitor the variation  

of the TMP [32, 33]. The bottom of HAMBR was packed 

by Granular Activated Carbon (GAC) media  
 

Table 1: Operating conditions of the HAMBR. 

Parameter Value 

HRT (h) 36  

pH 7-7.5 

SRT (day) up to 40  

OLR (kg COD/m3day) 0.89-1.2 

Temperature (ºC) 20-25 

 

in order to develop biofilm and increase removal 

efficiency of pollutants [34]. The performance of  

the bioreactor for removal of pollutants was analyzed 

through several conventional indexes of water quality, 

including COD, NH+
4, NO¯

2, NO¯
3 and TN.  

 

Analytical methods 

The concentrations of COD, NH+
4, NO¯

2, NO¯
3 and 

TN for both supernatant and permeate were analyzed 

using specific test kits on a Hach DR 5000 

Spectrophotometer (Loveland, CO). The concentration 

of SS was determined in accordance with the Standard 

Methods for the Examination of Water and Wastewater [35]. 

The pH value was measured using a pH meter (691 pH Meter, 

Metrohm). The TMP was monitored by a pressure 

gauge set between the membrane module and  

the suction pump. 

 

RESULTS AND DISCUSSION 

Organic carbon removal 

Fig. 2 shows the variation of COD concentrations and 

removal efficiencies during the operating time. The COD 

concentration in permeate (CODp) and supernatant (CODs) 

remained lower than 65 mg/L and 175 mg/L, respectively, 

during the experiment, and an average reduction of 98% 

and 95% was observed, respectively. While COD removal 

in a conventional MBR was reported to be 80% [36] and 

at a hybrid moving bed biofilm reactor-membrane 

bioreactor (hybrid MBBR-MBR) containing carriers,  

it was 85.82 ± 2.12% [37]. Additionally, for a jet loop 

MBR which was fed by olive mill wastewater, 

approximately 93% removal efficiencies in terms of COD 

was achieved [38]. 

The COD concentration of supernatant (CODs) was 

higher than CODp, which shows the beneficial effect of 

dynamic membrane for increasing the COD removal and 

the fact that this COD is a consequence of biological 
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Fig. 1: Schematic diagram of the HAMBR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: COD concentration value and removal efficiency  

in permeate and supernatant versus time in the HAMBR. 

 

activity [32]. These findings were in line with other studies 

[39, 40]. Nevertheless, the CODs removal value had more 

fluctuation compared with CODp. This fluctuation was due 

to the change of concentration of pollutants in the real 

wastewater. The significant reduction in COD shows  

that the continuous supply of organic matters in the feed  

is utilized by the microbial population. This is supported 

by the growth in MLSS during continuous operation [41]. 

 
Nitrogen removal 

Fig. 3 demonstrates the ammonium, nitrite, nitrate  

and TN removal efficiencies during the experimental period 

of HAMBR. Totally, converting nitrogenous substances  

to nitrogen gas needs an oxic and anoxic environment  

to create an appropriate nitrification-denitrification 

condition. Nitrite is the product of ammonia oxidation and 

a connecting point between nitrification and denitrification 

and can convert not only to nitrogen gas but also to nitrate 

via nitrification. Such coordination varies depending  

on the culture conditions and bacterial population [42].  

Fig. 3 (a) indicates the concentration removal of nitrite 

and nitrate. It was observed that nitrite removal 

efficiencies were in the range of 70-90%, indicating that 

most nitrite has been converted and nitrification has taken 
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Fig. 3: Removal efficiency of the HAMBR: (a) Nitrite and Nitrate and (b) Ammonium and TN. 

 

place. In addition, nitrate removal was more than 65%, 

which is an acceptable value. 

Fig. 3 (b) demonstrates ammonia and TN removal 

efficiencies during HAMBR operation. Ammonia 

concentration decreases very obviously and the maximal 

NH4-N removal percentage was 83%, indicating that  

the nitrifying bacteria gradually accumulate in the bioreactor. 

In addition, in this study, the range of TN removal was  

61-90%, while in another study, the airlift MBR was used 

for simultaneous nitrification-denitrification and the 

average total nitrogen removals were in the range of  

39.4-63.1% [43]. Furthermore, Kimura et al. [44] reported 

that TN removal rate by baffled membrane bioreactor  

was 77%. 

On the other hand, generally, removal efficiencies of 

nitrogenous substances in permeate were higher than 

supernatant, which indicates the effectiveness of 

membrane on removal of nutrients. These results all 

indicate that the HAMBR was stable and feasible  

and the treatment efficiency was satisfactory. 

 

Membrane performance 

Characterization of fouling during the operation  

of HAMBR was monitored by TMP. Fig. 4 demonstrates 

the variation of TMP and flux values during more than  

40 days of operation of the HAMBR. The rate of change 

in TMP value is a significant factor to evaluate the system 

performance in an MBR system [45], because,  

at a constant rate of permeate flow, TMP is directly connected 

to the rate of membrane fouling. The value of permeate 

flux was maintained approximately 12 L/m2h, and the rate 

of TMP increasing was 1.75 mbar/day.  

As it is obvious in Fig. 4, during the initial 5 days of 

operation, the increase in TMP of the membranes was 

relatively great, approximately 6  mbar/day, partly as  

a consequence of the development of biological activities 

and bio-accumulation on the membranes. Subsequently, 

there was a modest increase with some fluctuations  

in TMP value in 40 days. During operational period, there 

was not the tendency of a “TMP jump” as reported in many 

literatures [46, 47], which indicates acceptable 

performance of membrane and resistance against fouling. 

The value of TMP reached 163 mbar at the end of  

the operation compared to 93 mbar at the beginning.  

 

Industrial application and economic evaluation 

It was expected that, by 2019, more than 5 million 

m3/day of wastewater would be treated by MBR plants  

in the world. The Henriksdal wastewater treatment plant in 

Stockholm will be upgraded with an MBR, which will be able 

to treat 864,000 m3/day of wastewater, making  

it the largest MBR plant in the world. In 2004, when  

the Nordkanal MBR plant was commissioned, it was  

the largest MBR plant with a design capacity of  

45,000 m3/day. This increase in the design capacity between  

the Nordkanal and the Henriksdal plants shows the 

significant growth of MBR technology [48, 49]. 

Energy demand and membrane fouling are important 

features regarding economic aspects of MBR. For this reason, 

these factors are focal points  in  the  full-scale  MBR 
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Fig. 4: TMP and flux profile during operating period. 

 

design and operation [49]. According to the recently 

reported data from full-scale MBRs, the average annual 

specific energy consumption varies between: 0.8-2.4 kWh/m3 

in France [50], 0.8-3.0 kWh/m3 in Japan [51],  

0.4-0.6 kWh/m3 in China [52] and 0.4-2.1 kWh/m3  

in Spain [53]. For this reason, recent developments  

in membrane bioreactor energy reduction focused  

on the module configuration, aeration strategies, control systems, 

low-energy membrane cleaning methods or novel fouling 

mitigation methods [18, 54]. On the other hand, since 

membrane prices have significantly decreased during 

the last 15 years, MBR technology has become a more 

attractive solution for medium sized plants with  

a population equivalent of 10,000-100,000. Furthermore, 

considerable progress has been accomplished in the design 

and operation optimization of MBR systems, which  

has helped to reduce the capital and operating expenses  

of MBR plants. The global market for MBRs was  

$425.7 million in 2014 and is projected to approach  

$777.7 million by 2019, registering a Compound Annual Growth 

Rate (CAGR) of 12.8% in the period 2014-2019 [49]. 

 

CONCLUSIONS 

Through an HAMBR experiment lasting 40 days under  

the provided operational conditions, removal of pollutants  

was evaluated. It was concluded that multi-zone conditions 

form gradually in the single membrane bioreactor, creating  

a beneficial environment for simultaneous nitrification  

and denitrification for the removal of the carbonaceous  

and nitrogenous materials, and permeate quality reached below 

the standard of Iran. The removal efficiencies were achieved 

through an HRT of 36 h, and the best COD removal efficiency 

was 99%. In addition, the performance of the system  

was acceptable in terms of resistance against fouling 

phenomenon, and the TMP development was only  

1.75 mbar/day, which is an important parameter during 

HAMBR operation.  
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