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ABSTRACT: Synthesis of 2,3-dihydroquinazolin-4(1H)-ones using H3BO3/montmorillonite K10 

(H3BO3/mont K10) catalyst has been reported. H3BO3/mont K10 and H3BO3/mont K30 have been prepared 

and used as catalysts in the reaction between anthranilamide and benzaldehyde to prepare  

2-phenyl-2,3-dihydroquinazolin-4(1H)-one. The catalysts have been characterized for their  

physico-chemical properties by XRD, IR, BET surface analysis, TGA, SEM, and DRIFTS. 

H3BO3/mont K10 has shown better catalytic activity among the catalysts tested for the synthesis  

of 2-phenyl-2,3-dihydroquinazolin-4(1H)-one. The reaction conditions have been optimized  

for 2-phenyl-2,3-dihydroquinazolin-4(1H)-one and the reusability of H3BO3/mont K10 has also been 

investigated. Several 2,3-dihydroquinazolin-4(1H)-one derivatives have been synthesized in good  

to excellent yields using the optimized reaction conditions. 
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INTRODUCTION 

Clays are hydrous layered silicates and occur easily  

in nature. Clays have been used as catalysts for various  

 

 

 

organic transformations. Because of their simple 

modification procedures, lower cost, recyclability,  
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and environmentally friendly nature, lot of attention is 

drawn in developing novel methods of using clays as 

catalysts for variety of organic reactions [1]. 

Quinazolinone derivatives are a class of compounds 

that are present in several bioactive natural products  

and pharmaceutical compounds. Particularly,  

2,3-dihydroquinazolinone derivatives possess many biological, 

medicinal and pharmacological properties exhibiting antibiotic, 

anticancer, antidepressant, antihistamine, antihypertonic, 

antipyretic, antitumor, antituberclosis, analgesic, diuretic, 

and vasodilating activities [2-6]. The potential biological 

and pharmaceutical activities of quinazolinones have driven 

researchers to develop new methods for their synthesis. 

From the literature, many synthetic methods  

have been disclosed for the synthesis of 2,3-dihydroquinazolinones 

and  the most of the methods include cyclocondensation 

reaction of isatoic anhydride, aromatic aldehydes and 

primary amines or ammonium salts and condensation  

of aryl, alkyl, and heteroaryl aldehydes with anthranilamide 

in presence of catalysts. Synthesis of 2,3-dihydroquinazolinone 

derivatives has been accomplished by using HCl [7],  

p-TSA/NaHSO3 [8], SmI2[9], TiCl4 [10], CuCl2 [11], 

KAl(SO4)2·12H2O [12], SnCl2 [13], Montmorillonite K10 [14], 

Amberlyst-15 [15], ionic liquids [16], molecular iodine [17], 

ammonium chloride [18], gallium(III) triflate [19], silica 

sulfuric acid [20], trifluoroacetic acid [21], 

[bmim]HSO4[22], ZnCl2 [23], cellulose-SO3H [24], 

sulfamic acid [25], thiamine hydrochloride [26],  

cyanuric acid [27], β-cyclodextrin [28],  

2-morpholinoethanesulfonic acid [29], polyethylene 

glycol-400 [30], iron(III) chloride [31], K3PO4 [32],  

Pt-MWCNT [33], LaCl3/nano SiO2 [34], Y(OTf)3 [35],  

p-sulfonic acid calix[4]arene [36], Fe3O4-SA-PPCA [37], 

hydroxyapatite nanoparticles [38], nickel complex 

anchored onto MCM-41 [39], lactic acid [40], molecular 

sieve supported lanthanum [41], graphene oxide  

nano sheets [42], N-sulfonic acid pyridinium chloride [43],  

and α-chymotrypsin [44].  

Some methods described in the literature for synthesis 

of 2,3-dihydroquinazolinone derivatives have 

disadvantages and few catalysts have disposal problems 

after use, and they also have the drawbacks with respect 

to reaction time, cost of the reagents or catalysts, purity 

of products, tedious reaction workups, etc., for example, 

transition metal salts and ionic liquids are expensive  

and mineral acids are corrosive. Hence, the development 

of a convenient, efficient, and environmentally friendly 

method is needed to prepare 2,3-dihydroquinazolinones.  

In continuation of our research on the development  

of clay catalysts for organic transformations [45, 46], herein 

we report a simple and environmentally benign method 

for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones  

in the presence of H3BO3/mont K10.   

 

EXPERIMENTAL SECTION 

Materials  

Montmorillonite K10 (Mont K10), Montmorillonite K30 

(Mont K30), and Montmorillonite KSF (Mont KSF) 

catalysts have been procured from Sigma-Aldrich. The 

reagents were purchased from Avra synthesis, E-Merk, 

Qualigens, and Loba Chemie, India. The reagents were used 

as-received and some of them were purified by distillation. 

 

Preparation of catalysts: Procedure for preparation of 

H3BO3/mont K10 and H3BO3/mont K30 

2 g of boric acid (H3BO3) and 10 g Mont K10  

were weighed accurately. The measured boric acid  

was dissolved in 70 mL of deionised water. The H3BO3 

solution was loaded on the measured quantity of Mont 

K10 with constant stirring in a 250 mL round bottom 

flask and refluxed for 4 h. The round bottom flask  

was cooled to room temperature, water was evaporated 

under vacuum, and the resultant material was dried in an oven 

at 100 °C for 3 h to obtain H3BO3/mont K10. Similarly, 

H3BO3/mont K30 was also prepared.  

 

General procedure for the preparation of  

2,3-dihydroquinazolin-4(1H)-ones (Scheme 1) 

A mixture of anthranilamide (1 mmol) and aldehyde 

(1.2 or 1.5 mmol) was refluxed with H3BO3/mont K10 

(100 mg) in ethanol (10 mL) medium at appropriate time. 

The reaction mixture was cooled to room temperature and 

filtered off to isolate the catalyst. The excess solvent from 

the reaction mixture was removed under vacuum;  

the resultant solid was dissolved in dichloromethane (15 mL), 

and scrubbed with water (10 mL). The organic layer  

was dried over anhydrous sodium sulfate and concentrated 

under vacuum to obtain crude product. Finally, the crude 

product was recrystallized from ethanol to afford  

pure corresponding 2,3-dihydroquinazolin-4(1H)-one. 

The purified products were identified by their melting points, 
1H NMR, and IR spectra. 
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Scheme 1: Preparation of 2,3-dihydroquinazolin-4(1H)-ones catalyzed by H3BO3/mont K10. 

 

Characterization  

Powder X-Ray Diffraction (PXRD) data were collected 

on Rigaku XPert Pro X-ray diffractometer with Cu Kα 

radiation (λ = 0.15418 nm). The InfraRed (IR) spectra 

have run between the ranges of 450-4000 cm-1 on JASCO 

4600 FT-IR spectrometer by applying KBr pellet method. 

The specific surface areas of the samples were investigated 

by Brunauer-Emmett-Teller (BET) method using N2 

adsorption-desorption at 77 K on Micromeritics ASAP 

2020 surface area analyzer and the porosity distribution 

was collected from the adsorption branch of the 

isotherm using Barrett-Joyner-Halenda (BJH) analysis. 

The samples were out gassed at 150 °C for 12 h before 

physisorption measurements. The ThermoGravimetry (TG) 

analysis has collected on a TA SDT Q600 instrument in 

N2 (50 mL/min) with a heating rate of 10 °C/min  

from ambient temperature to 800 °C. The SEM analysis 

of sample powders was recorded on an FE-SEM 

(SERON Technology, Korea). Acidity of solid catalysts 

was measured using Diffuse Reflectance Infrared 

Fourier Transform Spectroscopy (DRIFTS)  

by pyridine using a JASCO 4600 FT-IR spectrometer 

with DRIFTS accessory [46, 47]. The 1H NMR spectra 

were collected on Bruker 300 MHz and/or Bruker  

400 MHz (Avance III HD) spectrometer. Melting points 

of 2,3-dihydroquinazolin-4(1H)-ones were identified  

by using an electro thermal melting point apparatus in open 

capillaries and were uncorrected.  

 

RESULTS AND DISCUSSION 

PXRD Analysis 

Fig. 1 shows XRD patterns of Mont K10, 

H3BO3/mont K10, Mont K30, and H3BO3/mont K30. The 

XRD patterns of Mont K10 and Mont K30 (Monts) have 

shown smectite (Sm), feldspar (F) and quartz (Q). The 

monts have 2Ɵ values at 8.86, 17.67, 19.83, 20.70, 26.62, 

27.63, 29.80, 35.09, and 45.53. The intensity of the peaks  

has increased in the boric acid supported monts due to 

better dispersion of boric acid on the monts which also 

indicates no change in the structure of the parent monts 

after simple modification.   

 

FT-IR Analysis 

Fig. 2 shows infrared spectra of H3BO3, Mont K10, 

Mont K30, H3BO3/Mont K10 and H3BO3/Mont K30. 

Boric acid has shown infrared band at 3217 cm-1 for O-H 

stretching , 1466 cm-1 for asymmetric stretching 

vibrations of B-O, 1193 cm-1 for B-O-H in plane bending, 

886 cm-1 for symmetric stretching vibrations of B-O, 814 cm-1 

for B-O-H out of plane bending, 646 cm-1 for 

deformation vibration of atoms in B-O, and 550 cm-1  

for  B-O-B vibration [48]. Infrared bands at 3435 and 1639 cm-1 

were observed in all the monts, due to the stretching  

and bending vibrations of water molecules or hydroxyl 

groups in the interlayer. A band at about 3634 cm−1 

assigned to lattice hydroxyls O-H stretching mode which 

arise from the vibration of firmly bound H2O.  

The shoulder band near 1124 cm−1 is assigned to the Si–O 

bending vibration, while the Si–O–Si stretching vibration 

has appeared near 1036 cm−1 as a strong band. The 

shoulder band at 916 cm−1 can be attributed to Al–OH 

group and the band near 797 cm−1 is due to the skeletal 

vibrations of quartz [49]. The band at 1466 cm-1 in boric 

acid has shifted to 1419 cm−1 in H3BO3/monts. Further, 

many bands in boric acid have merged with bands of 

monts in H3BO3/monts.   

 

Surface Characteristics 

BET surface areas and pore-size distributions 

(adsorption branch) have been calculated for the monts 

and the values are shown in Table 1. H3BO3/Mont K10, 

and H3BO3/Mont K30 have shown reduced specific 

surface areas compared to their patent monts due to 

dispersion of boric acid on monts.  
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Fig. 1: PXRD patterns of Mont K10, H3BO3/mont K10, Mont 

K30, and H3BO3/mont K30. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: IR spectra of Mont K10, H3BO3/mont K10, Mont K30, 

and H3BO3/mont K30. 

 
Fig. 3 shows nitrogen adsorption-desorption 

isotherms of Mont K10, H3BO3/Mont K10, Mont K30, 

and H3BO3/mont K30.  The parent monts exhibit well 

defined hysteresis loops in the relative pressure (P/Pο) 

range of 0.40 to 0.99, whereas boric acid supported monts 

exhibit hysteresis loops in the relative pressure (P/Pο) 

range of 0.43 to 0.99. Mont K10 and its modified form 

exhibit slightly bigger hysteresis loops compared to Mont K30 

and its modified form in the relative pressure (P/Pο)  

range of 0.40 to 0.99. The sorption isotherms of catalysts 

are of type IV (H3) which indicates the presence of 

mesoporous slit-shaped pores [50]. Fig. 4 shows the BJH 

pore-size distribution curves for Mont K10, H3BO3/Mont K10, 

Mont K30, and H3BO3/mont K30. The Mont K10,  

Mont K30 and their modified forms possess mesopores. 

H3BO3/Mont K10 and H3BO3/Mont K30 have shown 

reduced pore diameters due to dispersion of boric acid 

into the pores of parent monts and therefore they  

have shown reduced surface areas.   

 

TG Analysis 

Fig. 5 shows TG profiles of Mont K10, Mont K30, 

H3BO3/Mont K10, and H3BO3/Mont K10. The TG 

profiles of monts and H3BO3/monts show an initial sharp 

decrease due to the loss of physically adsorbed water and 

interlayer water in monts and a second one beyond about 

120–400 °C due to dehydration of boric acid [51] and  

the gradual loss of the hydroxyl groups in monts. The loss  

at 400–550 °C is hydroxyl water associated with their 

structure. Between 550 and 700 °C, an additional amount 

of water is lost [52]. There is a negligible weight loss 

beyond 700 °C in all catalysts. H3BO3/monts have shown 

more weight loss compared to their parents due to 

dehydration of boric acid present on them.  

 

SEM Analysis  

The surface distribution morphology of Mont K10, 

Mont K30, H3BO3/mont K10, and H3BO3/Mont K30  

is demonstrated in Fig. 6. It is evident from the SEM 

pictures that both the parent monts and their modified 

forms have particles of different shapes and sizes. 

However, H3BO3/monts have many smaller size particles 

or platelets due to treatment with boric acid.  

 

DRIFTS Studies 

The acidity of the monts has been investigated  

by DRIFTS using pyridine as a probe molecule. Pyridine 

has been used as a probe molecule for the determination  

of the nature of acid sites on the surface of solid catalysts, 

particularly clay catalysts [53]. The DRIFTS spectra  

of Mont K10, Mont K30, H3BO3/Mont K10, and 

H3BO3/Mont K30 after pyridine adsorption are shown  

in Fig. 7. In this study, the infrared bands are observed  

at 1545, 1490, and 1443 cm-1 for the monts. Further, 

hydrogen-bonded pyridine typically absorbs at 1440 and 

1490 cm-1. The vibrations at 1443 cm-1 are associated 

with pyridine coordinated to Lewis sites, the vibrations  

at 1545 cm-1 are associated to pyridine bound to Brønsted 

sites (pyridinium ions), and the vibrations at 1490 cm-1 

are associated to pyridine bound to both Brønsted and 

Lewis acid sites [47]. It is evident that the acidity of 

monts has increased after modification. The acid sites 
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Fig. 3: Nitrogen adsorption-desorption isotherms of a) Mont K10, and H3BO3/mont K10, b) Mont K30, and H3BO3/mont K30. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: BJH pore size distribution curves of a) Mont K10, and H3BO3/mont K10, b) Mont K30, and H3BO3/mont K30. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Thermo gravimetric profiles of Mont K10, 

H3BO3/mont K10, Mont K30, and H3BO3/mont K30. 

 

(at 1545 cm-1 & 1490 cm-1) in H3BO3/mont K10 and 

H3BO3/Mont K30 are more over Mont K10 and Mont K30 

respectively. Further, all the monts have shown Brønsted and 

Lewis acid sites. Mont KSF has shown better acidity (c in Fig. 7). 

The band at 1443 cm-1 in H3BO3/Mont K30 has merged with 

the band for hydrogen-bonded pyridine.  
 

Catalytic Activity 

The activity of the catalysts was tested on the reaction 

between anthranilamide and benzaldehyde in ethanol. 

The percentage yields of 2-phenyl-2,3-dihydroquinazolin-

4(1H)-one were obtained in different reactions carried out 

using different catalysts are presented in Table 1.  

The activity under specified conditions as summarized  

in Table 1, is as follows: H3BO3  H3BO3/Mont K10  

H3BO3/Mont K30  Mont K10  p-TSA  Mont KSF  

Mont K30  No catalyst. It is to be noted that though 

boric acid catalyzed reaction yields 75% of the product, 

the catalyst cannot be reused. The activity of the catalysts 

for the reaction between anthranilamide and 

benzaldehyde in ethanol has been correlated with the data 

of acid sites obtained from DRIFTS study using pyridine. 

The activity of the catalysts is found to follow 
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Table 1: Activity of catalysts for the reaction between anthranilamide and benzaldehyde. 

Entry Catalyst Sp. Surface area (m2/g) Avg. pore diameter (Å) Yield (%)* 

1 Mont K10 155 47.02 41 

2 Mont K30 138 45.19 26 

3 Mont KSF 5 -- 31 

4 H3BO3/mont K10 89 38.78 67 

5 H3BO3/mont K30 78 36.78 45 

6 p-TSA -- -- 36 

7 H3BO3 -- -- 75 

8 No catalyst -- -- Nil 

* Isolated yield. Reaction conditions: Molar ratio (Anthranilamide: benzaldehyde): 1:1.2; Amount of catalyst: 100 mg; Solvent: Ethanol; Time: 4 h. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: SEM images of Mont K10, H3BO3/mont K10, Mont K30, and H3BO3/mont K30. 

 

the sequence: H3BO3/Mont K10  H3BO3/Mont K30  

Mont K10  Mont K30, which is in agreement with their 

Brønsted acidity data. It is clear from the results  

that H3BO3/monts having lower surface area and pore 

diameter than their parent monts have shown better 

acidity and activity. However, Mont KSF, with the lowest 

surface area of the monts tested, has shown better acidity 

in DRIFTS. It can be concluded that the activity of 

catalysts depends on acidity, surface characteristics, 

accessibility of acidic sites, nature of the reactants,  

and solvent.  

H3BO3/Mont K10 and H3BO3/Mont K30 have been used 

as catalysts for the reaction between anthranilamide  

and benzaldehyde and the effects of different parameters 

such as solvent, molar ratio, amount of catalyst, and time 

on the yield of 2-phenyl-2,3-dihydroquinazolin-4(1H)- 

one have been studied. Further, some 2,3-dihydroquinazolin  

-4(1H)-one derivatives have been synthesised 

Mont K10 H3BO3/mont K10 

Mont K30 H3BO3/mont K30 
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Table 2: Effect of solvent on the yield of 2-phenyl-2,3-dihydroquinazolin-4(1H)-one. 

Entry Solvent (b.p.) Yield (%)* with H3BO3/mont K10 Yield (%)* with H3BO3/mont K30 

1 Methanol (64.7 °C) 13 39 

2 Ethanol (78 °C) 67 45 

3 Water (100 °C) Nil Nil 

4 Toluene (110 °C) 11 51 

5 o-Xylene (142 °C) 32 41 

* Isolated yield. Reaction conditions: Molar ratio (Anthranilamide: benzaldehyde): 1:1.2; Amount of catalyst: 100 mg; Time: 4 h. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: DRIFTS spectra of a) Mont K10, a') H3BO3/Mont K10, 

b) Mont K30, b') H3BO3/mont K30, and c) Mont KSF after 

pyridine adsorption. 

 

using the optimised conditions and reusability of 

H3BO3/mont K10 has been investigated.   

The reaction between anthranilamide and 

benzaldehyde was carried out in five different solvents 

for four hours (Table 2). It was found that the reaction 

catalyzed by H3BO3/Mont K10 in ethanol yields 

maximum, 67% (entry 2, Table 2). However, there was 

no reaction in water (entry 3, Table 2) catalyzed by both 

catalysts. The reactions catalyzed by H3BO3/Mont K30  

in different solvents yielded the product in 39-51%.  

It was also observed that the yields were not dependent 

on the boiling points of the solvents and further the yields 

were not appreciable in non-polar solvents such as toluene 

and o-xylene in presence of H3BO3/mont K10. Therefore, 

further reactions were studied in ethanol solvent. 

 

Effect of Molar Ratio 

The reaction between anthranilamide and benzaldehyde 

was carried out in presence of H3BO3/Mont K10  

and H3BO3/Mont K30 using equimolar ratio of 

anthranilamide and benzaldehyde, wherein the 2-phenyl-

2,3-dihydroquinazolin-4(1H)-one yield was lower (entry 1, 

Table 3). When the molar ratio of anthranilamide  

to benzaldehyde was gradually increased from 1:1 to 1: 3, 

in presence of the catalysts, higher quantities of the product 

were formed (Table 3). This shows that the reaction 

equilibrium shifts towards the formation of 2-phenyl-2,3-

dihydroquinazolin-4(1H)-one when benzaldehyde 

concentration was increased. However, the yield of  

2-phenyl-2,3-dihydroquinazolin-4(1H)-one was 91%  

when the anthranilamide to benzaldehyde ratio was 1:1.5 

and there was a small improvement in the percentage yield 

of 2-phenyl-2,3-dihydroquinazolin-4(1H)-one when  

the anthranilamide to benzaldehyde ratio was above 1:1.5 

(Table 3) in presence of H3BO3/mont K10, whereas  

the percentage yield of 2-phenyl-2,3-dihydroquinazolin-

4(1H)-one was gradually increased till the anthranilamide 

to benzaldehyde ratio was 1:2.5 in H3BO3/Mont K30 

catalyzed reaction. Hence, for studies on preparation of 

various 2,3-dihydroquinazolin-4(1H)-ones using 

H3BO3/mont K10, the anthranilamide to aldehyde ratio of 

1:1.5 was selected.   

 

Effect of Amount of Catalyst 

The reaction between anthranilamide and 

benzaldehyde was carried out using 50 to 250 mg of the 

catalyst in ethanol solvent for four hours. The product 

yields were increased with increase in the catalyst amount 

as shown in Fig. 8. It is clear from the results  

that accessibility, the strength of the acidic sites,  

and their concentration are responsible for increased 

yields in this reaction. When 100-250 mg of H3BO3/ 

Mont K10 was used the yield of 2-phenyl-2,3-

dihydroquinazolin-4(1H)-one slightly decreased.  

On the other hand, the yield gradually increased till  

200 mg of H3BO3/Mont K30 and thereafter it decreased. 
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Table 3: Effect of molar ratio on the yield of 2-phenyl-2,3-dihydroquinazolin-4(1H)-one. 

Entry Molar Ratio [Anthranilamide: benzaldehyde] Yield (%)* with H3BO3/mont K10 Yield (%)* with H3BO3/mont K30 

1 1:1 26 19 

2 1:1.1 43 40 

3 1:1.2 67 45 

4 1:1.5 91 76 

5 1:2 93 88 

6 1:2.5 96 96 

7 1:3 98 96 

* Isolated yield. Reaction conditions: Amount of catalyst: 100 mg; Solvent: Ethanol; Time: 4 h. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8: Effect of catalyst amount on the yield of 2-phenyl-2,3-

dihydroquinazolin-4(1H)-one. Reaction conditions: Molar 

ratio (Anthranilamide: benzaldehyde): 1:1.2; Amount of 

catalyst: 100 mg; Solvent: Ethanol; Time: 4 h 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9: Effect of time on the yield of 2-phenyl-2,3-

dihydroquinazolin-4(1H)-one. Reaction conditions: Molar 

ratio (Anthranilamide: benzaldehyde): 1:1.2; Amount of 

catalyst: 100 mg; Solvent: Ethanol 

 

In general, the reactions that are catalyzed by clays 

follow adsorption and diffusion of reactants through  

the pores and interlayers. The diffusion of the reactants  

in the active sites present on the catalyst becomes a limiting 

process in porous solid acid catalysts. Firstly,  

the reactants are adsorbed on the active sites of the 

catalyst and form products through formation of 

intermediate complex. The product formed comes out of 

the sites. If excess catalyst is used, even though more 

active sites are available, the product formed remains 

adsorbed within the active sites of the catalyst and 

restricts diffusion for the fresh reactants. Hence,  

the decrease in the yield of 2-phenyl-2,3-dihydroquinazolin-

4(1H)-one was observed due to unavailability of active 

sites to the reactants when excess catalysts were used. 

Therefore, 100 mg of H3BO3/Mont K10 was used  

for studies on preparation of various 2,3-dihydroquinazolin-

4(1H)-ones.   

 

Effect of Time 

In order to study effect of time on the yield of  

2-phenyl-2,3-dihydroquinazolin-4(1H)-one, the reaction 

between anthranilamide and benzaldehyde has been 

studied at 2, 4, 6, and 8 hour intervals of time. Fig. 9 

shows the effect of reaction time on the yield of  

2-phenyl-2,3-dihydroquinazolin-4(1H)-one for 1 mmol  

of anthranilamide, 1.2 mmol of benzaldehyde and 100 mg  

of H3BO3/Mont K10 and H3BO3/Mont K30. The yield  

of 2-phenyl-2,3-dihydroquinazolin-4(1H)-one increased with 

increase in reaction time from 2 to 4 h. Further increase 

in the reaction time beyond 4 h resulted in reduced yield 

of 2-phenyl-2,3-dihydroquinazolin-4(1H)-one in presence 
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Table 4: H3BO3/mont K10 catalyzed synthesis of various 2,3-dihydroquinazolin-4(1H)-one derivatives. 

Entry 
Aldehyde Product Yield (%)* Melting point 

1 Benzaldehyde 2-Phenyl-2,3-dihydroquinazolin-4(1H)-one 91 219-221 ˚C [16] 

2 2-Chlorobenzaldehyde 2-(2-Chlorophenyl)-2,3-dihydroquinazolin-4(1H)-one 89 210-212 ˚C [54] 

3 3-Chlorobenzaldehyde 2-(3-Chlorophenyl)-2,3-dihydroquinazolin-4(1H)-one 96 179-181 ˚C [55] 

4 4-Chlorobenzaldehyde 2-(4-Chlorophenyl)-2,3-dihydroquinazolin-4(1H)-one 75 203-205 ˚C [25] 

5 2-Hydroxybenzaldehyde 2-(2-Hydroxyphenyl)-2,3-dihydroquinazolin-4(1H)-one 59 222-224 ˚C [42] 

6 4-Hydroxybenzaldehyde 2-(4-Hydroxyphenyl)-2,3-dihydroquinazolin-4(1H)-one 84 278-280 ˚C [54] 

7 4-Methoxybenzaldehyde 2-(4-Methoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one 94 189-191 ˚C [25] 

8 2-Nitrobenzaldehyde 2-(2-Nitrophenyl)-2,3-dihydroquinazolin-4(1H)-one 78 183-185 ˚C [19] 

9 3-Nitrobenzaldehyde 2-(3-Nitrophenyl)-2,3-dihydroquinazolin-4(1H)-one 85 209-211 ˚C [25] 

* Isolated yield. Reaction conditions: Molar ratio (Anthranilamide: aldehyde): 1:1.5; Amount of catalyst, H3BO3/mont K10: 100 mg; Solvent: Ethanol; 

Time: 4 h. 

 

of H3BO3/mont K10. This phenomenon can be attributed 

to decomposition of unreacted reactants and/or product 

formed due to prolonged heating. However, the yield of 

2-phenyl-2,3-dihydroquinazolin-4(1H)-one was lower  

and increased with increase in reaction time from 2 to 8 h 

in presence of H3BO3/mont K30. 

The reaction was found to follow first order kinetics 

with respect to anthranilamide in presence of 

H3BO3/mont K10. The rate constant, the equilibrium 

constant for maximum yield, and the standard free energy 

change, are found to be κ=4.67×10-5 s-1, K=4.58×106, and 

∆G°= - 44757 J mol-1 respectively. 

 

Synthesis of 2,3-Dihydroquinazolin-4(1H)-one Derivatives 

To show the merit of the present investigation,  

the optimized reaction conditions were applied to the reaction 

of anthranilamide with several aldehydes. Table 4 shows 

the reaction of anthranilamide with various aldehydes. 

Among the aldehydes, benzaldehyde, 3-chloro, and  

4-methoxy substituted benzaldehydes gave corresponding 

2,3-dihydroquinazolin-4(1H)-ones in 91-96% yield,  

4-hydroxy, 3-nitro, and 2-chloro substituted benzaldehydes 

gave corresponding 2,3dihydroquinazolin-4(1H)-ones  

in 84-89% yield, 4-chloro, and  2-nitro substituted 

benzaldehydes gave corresponding 2, 3-

dihydroquinazolin-4(1H)-ones in 75 and 78% yield 

respectively, whereas 2-hydroxybenzaldehyde gave 

corresponding 2, 3-dihydroquinazolin-4(1H)-ones in 59% 

yield (entry 8, Table 4) due to retarding effect towards 

product formation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10: Recyclability of H3BO3/mont K10. Reaction conditions: 

Molar ratio (Anthranilamide: benzaldehyde): 1:1.5; Solvent: 

Ethanol; Time: 4 h 

 

Regeneration and Reuse of H3BO3/mont K10 

The used catalyst was washed with DCM and 

activated at 110 °C for 2 h. The regenerated catalyst  
 

was used for preparing 2-phenyl-2, 3-dihydroquinazolin-

4(1H)-one and observed about 9% loss in its activity  

at 3rd reuse (Fig. 10). 

 

CONCLUSIONS 

Environmentally friendly mild H3BO3/montmorillonite 

catalysts have been prepared, characterized, and used 

them for efficient synthesis of 2-phenyl-2,3-

dihydroquinazolin-4(1H)-one by optimizing the reaction 

conditions. Several 2,3-dihydroquinazolin-4(1H)-one 
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derivatives have been synthesized using H3BO3/mont 

K10 in good yields. This method is simple, requires 

cheaper reagents, the products are easy to separate from 

reaction mixture, and the catalyst(s) is reusable at least 

three times with negligible loss of activity. These 

catalysts can be used for many acid catalyzed organic 

transformations wherein mild acidity is required and 

investigations are under progress.  
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