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ABSTRACT: The buoyancy-driven boundary-layer flow from a heated horizontal circular cylinder 

immersed in a water-based alumina (Al2O3) nanofluid is investigated using variable properties  

for nanofluid viscosity. Two different viscosity models are utilized to evaluate heat transfer 

enhancement from a cylinder. Exact analytic solutions of the problem are attained employing  

a novel powerful technique is known as the Optimal Homotopy Analysis Method (OHAM).  

The accuracy and reliability of the results are verified by comparing them with experimental results 

in the literature. It is found that the characteristics of flow and temperature distributions  

are significantly influenced by the volume fraction of alumina nanoparticles, as well as nanofluid 

viscosity models. Enhancing the volume fraction of nanoparticles, the surface shear stress  

and the local Nusselt number both increase in the middle regions of the cylinder. The results also 

indicated that with increasing the nanoparticles volume fraction, isotherms become less dense  

and the absolute values of the stream-function decrease within the domain. Based on the results  

of the parametric study, two correlations (based on two different effective viscosity models) are proposed 

for the average Nusselt number of the alumina-water nanofluid in terms of volume fraction  

of the nanoparticles and the Rayleigh number which can be used as benchmarks for future 

investigations. However, uncertainties of viscosity models showed different manners on  

heat transfer coefficient versus nanoparticles volume fraction. 
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INTRODUCTION 

The Buoyancy-driven flow of an incompressible 

viscous fluid about a horizontal circular-shape cylinder  

 

 

 

represents a notable problem which has been substantially 

investigated experimentally and numerically because  
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of its engineering applications which include heaters, 

refrigerators, vaporizers, heat exchangers, hot water and 

steam pipes, air cooling systems for air conditioning, 

electrical conductors, and passive solar heating. 

In 1976, Sparrow and Lee [1] examined the problem 

of a vertical stream over a heated horizontal cylinder  

with circular cross-section for mixed convection. Merkin [2-4] 

was the first investigator who completely solved this 

problem by employing the methods of Blasius and 

Görtler series expansion along with a finite difference 

scheme and an integral method. Ingham [5] also 

investigated the convective boundary-layer flow and  

heat transfer along an isothermal horizontal cylinder. 

Kuehn and Goldstein [6] studied the laminar buoyancy-driven 

flow of air from an isothermal cylinder utilizing  

a numerical procedure. Their results were obtained for 

different values of Rayleigh numbers. Merkin and Pop [7] 

analyzed the natural convection boundary layer flow on 

an isoflux horizontal circular cylinder. In 1997, Morgan [8] 

conducted an extensive review of many theoretical, 

numerical and experimental studies on overall natural 

convective heat transfer from horizontal cylinders for 

Prandtl, Pr, equal to 0.7, and for Rayleigh numbers from 

10 to 107. He concluded that, due to the dispersions in the 

results, there were still uncertainties about the values of 

the mean Nusselt number, Nu. Nazar et al. [9] 

numerically solved the problem of free convection  

of micropolar fluid flow along an isoflux horizontal circular 

cylinder. Molla et al. investigated the effects of 

temperature dependent viscosity [10], heat generation [11], 

and wall heat flux [12] on free convection boundary-layer 

flow from a horizontal cylinder, numerically, conducting 

implicit finite difference method together with the Keller-

box scheme. In order to explore the effects of the angular 

position and the cylinder diameter on the local heat 

transfer, Chung et al. [13] investigated free convection 

flow and heat transfer phenomena on horizontal cylinders 

experimentally. Prhashanna and Chhabra [14] studied  

the laminar natural convection boundary layer flow and 

heat transfer from a horizontal circular cylinder submerged 

in quiescent power-law fluids, numerically. They observed 

that the local heat transfer coefficient declines from its 

maximum value at the front impingement point along the 

circumference of the cylinder. Azim and Chowdhury [15] 

analyzed the effects of heat generation and Joule heating 

on MHD-conjugate free convection over a horizontal 

circular cylinder numerically using Keller box method.  

A similar research work is also carried out by Bhuiyan et al. [16] 

which they have taken into account the effects of viscous 

dissipation, as well as Joule heating and magnetic field  

on free convection heat transfer from a horizontal cylinder. 

Javed et al. [17] investigated the natural convection 

boundary-layer flow around a horizontal circular cylinder 

under the effects of magnetic field and radiation. 

Sebastian and Shine [18] studied the buoyancy-driven 

flow along a circular cylinder with and without 

confinement numerically, using finite volume approach. 

They presented the heat transfer results for a wide range 

of the Rayleigh number. It should be noted that none  

of the above mentioned research works came up with  

an exact analytic solution to the problem of natural 

convection along a horizontal circular cylinder regardless 

the working fluid media.  

The low thermal conductivity of a conventional fluid 

such as air or water is the main drawback against the heat 

transfer enhancement in the free convection heat transfer 

regimes. A nanofluid, a suspension of nano-sized 

particles in a base fluid, possesses a higher thermal 

conductivity compared to that of the base fluid, and, 

therefore, is expected to surpass the heat transfer performance. 

A comprehensive survey of the works related to the 

nanofluids and their heat transfer characteristics  

can be found in a book by Das et al. [19], in a number  

of recent review papers [20-22], and in several recent 

research works [23-38].  

There are very few recent studies dealing with 

convective heat transfer along bodies immersed  

in a nanofluid medium. Valipour and Ghadi [39] investigated 

the flow distribution and force convection heat transfer 

through a Cu-water nanofluid around a circular cylinder 

numerically using a finite volume method. They estimated  

the effective viscosity and the effective thermal conductivity 

of nanofluid by Brinkman and Hamilton-Crosser models, 

respectively, and came up with that fact that the local and 

mean Nusselt numbers are enhanced as a result of adding 

nanoparticles to the base fluid. Nazar et al. [40] studied 

the steady mixed convection flow and heat transfer over 

an isothermal horizontal cylinder embedded in a 

nanofluid-filled porous medium for both cases of heated 

and cooled cylinders numerically, employing an implicit 

finite-difference scheme. Tham et al. [41] carried out 

similar work to the one conducted by Nazar et al. [40] 
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considering the effects of nanofluid thermophoresis and 

Brownian motion. Prasad et al. [42] and [43] conducted  

a numerical approach to the problem of natural convection 

heat and mass transfer of a nanofluid along a horizontal 

cylinder considering non-Newtonian and micropolar 

fluids as the working fluid. They reported their results based  

on the effects of thermophoresis and Brownian motion of 

the nanofluid. In a similar study, the effects of thermophoresis 

and Brownian motion on heat and mass transfer of  

a nanofluid flow along a circular cylinder embedded  

in porous media is numerically investigated by Reddy and 

Chamkha [44] using a validated Finite element method.  

The above literature review reveals that neither  

a comprehensive analysis nor an exact analytic solution exists 

for the problem of buoyancy-driven flow of a nanofluid 

along a horizontal heated circular cylinder considering  

the viscosity uncertainties. It is to be noted that in the all  

of the previous research works, an exact solution for the governing 

differential equations was found to be inaccessible due to  

the non-linearity in the Navier–Stokes equations and/or  

the boundary conditions. Among the various analytical methods, 

homotopy method is one of the most powerful and superior 

techniques which provide the possibility to solve a set of 

coupled partial differential equations while offers great 

advantage of high flexibility to achieve reliable series 

solutions [45].  

In the present study, the Optimal Homotopy Analysis 

Method (OHAM) is extended to the case of natural 

convection boundary-layer flow and heat transfer from  

an isothermal heated circular cylinder immersed in a cold 

nanofluid. Al2O3-water nanofluid is considered as  

the working medium. Two different viscosity models, namely, 

the Brinkman [46] formula and the correlation proposed 

by Maïga et al. [47] are employed for the effective viscosity 

of the nanofluid. Using the OHAM, closed-form solutions 

are obtained for the velocity and temperature fields. 

Subsequently, a parametric study is performed, and  

the effects of the nanoparticles volume fraction on the velocity 

and temperature fields are investigated. Finally, correlations 

are proposed for the average Nusselt number of Al2O3-

water nanofluid in terms of the diametrical-based 

Rayleigh number and the nanoparticles volume fraction.  

 

GOVERNING EQUATIONS 

A steady, laminar, two-dimensional natural 

convective flow from a horizontal circular cylinder of  
 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1: Physical configuration and the local coordinate system. 

 

radius a, immersed in a viscous incompressible  

Al2O3-water nanofluid is considered (Fig. 1). The  and  

are coordinates measured perpendicular and along to the 

surface of the cylinder, respectively, with an origin  

at the lower stagnation point (  ≈ 0). The cylinder and  

the surrounding nanofluid are maintained at differentially-

different constant temperatures of Tw and T∞, 

respectively, with Tw > T∞. The 2D physical 

representation of the cylinder and the coordinate system 

are shown in Fig.1.  

Employing the boundary layer and the Boussinesq 

approximations, the equations for conservations of mass, 

momentum, and energy can be derived as the following 

form:  

ˆû
0

ˆ ˆx y

 
 

 
                                                                   (1) 

ˆ ˆ
ˆû

ˆ ˆx y

 
  

 
                                                                 (2) 

   
2

nf nf2
nf

ˆ ˆ1 y
g T T sin

ax̂


    
     

    
 

2

nf 2

T T T
ˆû

ˆ ˆx y x̂

  
   

  
                                                  (3) 

Where  ˆû,   are the velocity components along the 

 ˆ ˆx, y   axes, and the kinematic viscosity, υnf, the thermal 

expansion coefficient, βnf, and the thermal diffusivity, αnf, 

of the nanofluid are constants values evaluated  

at the temperature T = T∞. The respective boundary 

conditions for Eqs. (1) – (3) are   
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w
ˆˆ ˆu 0, T T at x 0                                       (4) 

ˆ ˆ0, T T at x                                    (5) 

To convert the governing equations into a  

non-dimensional form, the dimensionless variables  

are introduced as follows:  

 
1

4a
w

ˆ ˆ T Tx y
x Ra , y ,

a a T T





 
    

 
                      (6) 

   
1 1

4 2a a
f f

a a
ˆˆu Ra u, Ra

a a


     

where Raa is the Rayleigh number based on the radius 

of the cylinder which is defined as  

 
3

a f w
f f

a
Ra g T T

a
  


                                            (7) 

Inserting the above dimensionless variables into  

Eqs. (1) – (3) lead to the following non-dimensional equations:  

u
0

x y

 
 

 
                                                                   (8) 

2

1 22

1
u A A sin y

Pr x y x

    
    

   
                         (9) 

2

3 2
u A

x y x

   
  

  
                                                  (10) 

where  

 

 
nf nf f nf

1 2 3
nf nf ff

A , A , A
  

  
   

                 (11) 

The corresponding dimensionless forms of the 

boundary conditions are  

u 0, 1 at x 0                                       (12) 

0, 1 as x                                     (13) 

In order to solve Eqs. (8) – (9), subject to the above 

boundary conditions, the following non-similar 

transformations are introduced:  

   yf x, y and x, y                                    (14) 

where the stream function, ψ, can be defined as  

u and
y x

 
   
 

                                     (15) 

Substituting (13) – (14) into Eqs. (8) – (10) yields the 

following transformed equations after some algebraic 

manipulations:  

2 2 2 2

2 2

1 f f f f f f
f y

Pr x x x y yx x

        
                

             (16) 

 

2

3 2

f f
f y A

x x y x y x

       
   

      
                            (17) 

The transformed boundary conditions correspond to 

the above equations are  

f
f 0 1 at x 0

x


    


                             (18) 

f
0 0 as x

x


  


                             (19) 

 

Thermophysical Properties of the Nanofluid 

As stated previously, Al2O3-water nanofluid  

is employed as the working fluid in the present study. 

The thermophysical properties of the base fluid (Pr = 6.2) 

and the nanoparticles are summarized in Table 1. 

Various relations for the effective thermophysical 

properties of the nanofluids are available in the literature. 

The prominent empirical models on predicting  

the viscosity of nanofluids are presented in Table 2. 

Moreover, Fig. 2 shows a graphical comparison between 

these models.  

In order to gain a better understanding of  

the nanofluid viscosity variations, two formulas for  

the viscosity of the nanofluid, namely, the Brinkman [46] 

formula and Maïga et al.’s correlation [47], here referred  

to as Model I and Model II, respectively, are considered  

in the current investigation. Actually, due to the variety of 

existing models (Fig. 2), and to cope with the admissible 

range of the above-mentioned empirical models, the former  

is considered as the lower bound, while the latter correlation 

is regarded as the upper/moderate bound of the nanofluid 

viscosity variations.   

According to the Brinkman model (Model I),  

the following relation is proposed for the effective 

dynamic viscosity of a nanofluid  

 
2.5

eff f 1                                                         (20) 
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Table 1: Thermophysical properties of the base fluid and the nanoparticles. 

Physical property Water Al2O3-nanoparticles 

ρ (kg m-3) 997.1 3970 

cp (J kg-1 K-1) 4179 765 

k (W m-1 K-1) 0.613 40 

β × 105 (K-1) 21 0.85 

 

Table 2: Summary of the most well-known empirical correlations for the effective viscosity of nanofluids. 

Model Correlation 

Brinkman [46]  
2.5

eff f
1    

Maïga et al. [47]  2
eff f

1 7.3 123      

Batchelor [48]  2
eff f

1 2.5 6.5      

Corcione [49]  
0.3

1.03
nf f p f

1 1 34.87 d d
 

    
 

 

Heyhat et al. [50] nf f

5.989
Exp

0.278

 
   

 

 

Chandrasekar et al. [51] 

2.8

nf f
1 5200

1

  
        

 

Sekhar and Sharma [52]      
0.059150.5605 10.51

nf f nf p
0.935 1 T 70 1 d 80 1 100       

Hatschek [53]  eff f
1 4.5     

■ Assuming: dp = 50 nm, and Tnf ≈ Tbulk = 25°C. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Comparison between the nanofluid viscosity to that of 

the base fluid for prominent empirical models 

 

where μf is the viscosity of the base fluid, and ϕ 

denotes the volume fraction of the nanoparticles.  

The Maïga et al.’s correlation (Model II) is expressed as  

 2
eff f 1 7.3 123                                               (21) 

The density, ρnf, the heat capacity, (ρcp)nf, and  

the thermal expansion coefficient, βnf of the nanofluids 

can be obtained from the following respective equations:  

 nf f p1                                                        (22) 

      p p pnf f p
c 1 c c        
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pf p

nf f
f

1 c

1

   
  

 
                           (23) 

The thermal diffusivity of the nanofluids, αnf,  

is obtained from  

 nf nf p nf
k c                                                         (24) 
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Fig. 3: Ratio of the Ra and Pr of the nanofluid to that of the base fluid: (a) Rayleigh numbers ratio; (b) Prandtl numbers ratio. 

 

Where for spherical nanoparticles, the nanofluid 

effective thermal conductivity, knf can be evaluated from 

the Maxwell Garnett (MG) model [54] 

   
   

p f f p

nf f

p f f p

k 2k 2 k k
k k

k 2k k k

    
 
    
 

                          (25) 

Where kf and kp are the thermal conductivities  

of the base fluid and the nanoparticles, respectively. 

Considering the above relations for the thermophysical 

properties of the nanofluids and the definitions  

of the Rayleigh and Prandtl numbers for a nanofluid,  

the variations of  
1 4

a a
Ra Ra


 and  

1 2
Pr Pr  with  

the volume fraction of the nanoparticles for the Al2O3-water 

nanofluid (Models I and II) are presented for future 

reference in Figs. 3(a) and (b), respectively.  

The local Nusselt number of the nanofluids based on 

the radius of the horizontal cylinder is assessed as follows:  

 
 

w,anf
a nf

f w f

qh a a
Nu

k T T k


  


                             (26) 

 

  1nf
x̂ 0 nf 4

a
w f f x 0

T
k

x, yx̂ ka
Ra

T T k k x



 

 
     

   
  

  

The shear stress on the tube surface can be defined as:  

 
 

w nf

x̂ 0

ˆ ˆ ˆx, y
x, y

x̂


 
    

 
                                     (27) 

Which can be written in a non-dimensional form as  

   2
w nf

1 4 2 2
ff f a x 0

x, y f x, y
y

Ra a x


  
   

    

                   (28) 

HAM SOLUTION 

In order to solve Eqs. (16) and (17) by the HAM,  

the unknown functions f (x,y,ϕ) and θ (x,y,ϕ) are written 

in terms of a set of base functions multiplied by unknown 

coefficients. To satisfy the far-field boundary conditions 

(Eqs. ((18) and (19)) unanimously, the following  

base functions are chosen:  

  k p q
ny sin ycos yexp n x | 0,                               (29) 

0,p 0,q 0,k 0 or 1       

Where λ > 0 is a spatial-scale parameter. Hence,  

f and θ are expressed in the form of the following series:  

 f x, y,                                                                    (30) 

 k k p q
p,q,n

k 0 p 0 q 0 n 0

a y sin ycos yexp n x
   

   

   

 x, y,                                                                     (31) 

 k k p q
p,q,n

k 0 p 0 q 0 n 0

b y sin ycos yexp n x
   

   

   

Where k
p,q,na  and k

p,q,nb  are unknown coefficients. 

Based on the above solution expressions, and considering 

the boundary conditions at the plate surface (Eq. (18)), 

the following initial approximations f0 and θ0 for f and θ 

are selected, respectively:  

      0

1
f x, y 1 2exp x exp 2 x      


             (32) 

   0 x, y exp x                                                      (33) 
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The following auxiliary linear operators 1  and 2  

acting on f and θ, respectively, are defined:  

 
3 2

1 3 2

f f
f

x x

 
 
 

                                                   (34) 

 
2

2 2 xx

  
  


                                                     (35) 

which satisfy the following conditions:  

  1 1 2 3C C exp x C x 0                                    (36) 

  2 4 5C C exp x 0                                            (37) 

irrespective of the values of coefficients Ci (i = 

1,2,…,5). Considering Eqs. (15) and (16), the following 

non-linear operators are defined:  

   
 3

1 1 3

f x, y;qˆ ˆN f x, y;q , x, y;q A
x


   
  

             (38) 

 
 

2

2

f x, y;qsin y 1ˆA d, y;q
y pr x

  
   

 

  

 
     2 2

2

f x, y;q f x, y;q f x, y;q
f̂ x, y;q y

x x yx

  
 

    

  

   2

2

f x, y;q f x, y;q

y x

 


  

 

   
 2

2 3 2

ˆ x, y;qˆ ˆN f x, y;q , x, y;q A
x

 
   
  

            (39) 

 
     ˆ x, y;q f x, y;q x, y;q

f̂ x, y;q y
x x y

  
 

  
  

   ˆ x, y;q f x, y;q

y y

 


  

 

Where q  [0,1] is an embedding parameter, and 

 f̂ x, y;q  and  ˆ x, y;q  are nonzero real functions of x, 

y, and q. Subsequently, the following zeroth-order 

deformation equations are constructed:  

      1 0f̂ x, y;q f xq , y1                                   (40) 

   f 1
ˆ ˆq H N f x, y;q , x, y;q 
 

  

      2 0
ˆ x, y x y1 q ;q ,                                   (41) 

   2
ˆ ˆq H N f x, y;q , x, y;q 
 
 

 

Where ћf and ћθ are nonzero auxiliary parameters,  

and Hf (η) and Hθ (η) are nonzero auxiliary functions.  

The boundary conditions for the above equations are:  

     ˆ ˆ ˆf 0, y;q 0 f 0, y;q 0 f , y;q 0           (42) 

   ˆ ˆ0, y;q 1 , y;q 0                                        (43) 

The solution of the zeroth-order deformation 

equations and their respective boundary conditions for 

special cases of the embedding parameter q = 0 and q = 1 

are given by:  

       0 0
ˆ ˆf x, y;0 f x, y x, y;0 x, y                  (44) 

when q 0   

       ˆ ˆf x, y;1 f x, y x, y;1 x, y                       (45) 

when q 1   

Therefore, as q increases from 0 to 1,  f̂ x, y;q  and 

 ˆ x, y;q  deform from the initial approximations f0 and 

θ0 to the functions f and θ which are the solutions of  

Eqs. (15) and (16).  

Using Eq. (44), the Taylor series expansions of 

 f̂ x, y;q  and  ˆ x, y;q  with respect to the embedding 

parameter q about q = 0 are written as  

      m
0 m

m 1

f̂ x, y;q f x, y f x, y q




                           (46) 

      m
0 m

m 1

ˆ x, y;q x, y x, y q




                            (47) 

where  

 
 m

k m

q 0

f̂ x, y;q1
f x, y

m! q






                                   (48) 

 
 m

k m

q 0

f̂ x, y;q1
x, y

m! q



 


 

Suppose that the spatial-scale parameter λ,  

the auxiliary parameters ћf and ћθ, and the auxiliary functions 

Hf (η) and Hθ (η) are properly specified so that the above 

Taylor series are convergent at q = 1, then setting q = 1  

in Eqs. (46) and (47), and employing Eq. (45) yield  

the following relations for nth-order approximations:  
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     
n

0 m

m 1

f x, y f x, y f x, y


                                   (49) 

     
n

0 m

m 1

x, y x, y x, y


                                     (50) 

The next step in the HAM is to obtain fm(η) and θm(η) 

for m = 1, 2, …, n to be used in the mth-order 

approximations (49) and (50). To this end, the following 

vectors are defined:  

        n 0 1 2 nf f x, y ,f x, y ,f x, y ,..., f x, y              (51) 

        n 0 1 2 nx, y , x, y , x, y ,..., x, y                (52) 

Subsequently, the zeroth-order deformation equations 

(Eqs. (40) and (41)) are differentiated m times with 

respect to q, and divided by m!. Setting q = 0 in the 

resulting expressions yield the following mth-order 

deformation equations for m ≥ 1:  

   1 m m m 1f x, y f x, y                                       (53) 

  f
m m 1f f m 1f ,H x, y  
     

   2 m m m 1x, y x, y                                       (54) 

  m m 1 m 1H x, y f ,
  

    

where  

m

0 m 1

1 m 1


  


                                                       (55) 

And 

 f
m m 1 m 1 1 m 1f , A f x, y  
                                     (56) 

     
m 1

2 m 1 j m 1 j

j 0

sin x 1
A x, y f x, y f x, y

x Pr



  




  


  

     
 m 1 m 1

m 1 j

j m 1 j j

j 0 j 0

f x, y
f x, y f x, y y f x, y

y

 
 

 

 

 
  


   

 
 

m 1
j

m 1 j

j 0

f x, y
f x, y

y



 



 
 

 
   

 m m 1 m 1 3 m 1f , A x, y
  

                                     (57) 

     
m 1 m 1

m 1 j

j m 1 j j

j 0 j 0

f x, y x, y y f x, y
y

 
 

 

 

 
   


    

 
 m 1

m 1 j

j

j 0

f x, y
x, y

y


 




 

 
   

The boundary conditions for Eqs. (56) and (57) are 

given by  

       m m m mf 0, y f 0, y f , y 0, y                  (58) 

 m , y 0    

Considering conditions (36) and (37), the solutions  

of the mth-order deformation, equations can be written  

in following general forms:  

   m m m 1f x, y f x, y                                              (59) 

    1 f
1 f m m 1 m 1 1 2 3f H x, y f , d d exp x d

 
      

 

   m m m 1x, y x, y                                              (60) 

    1
2 m m 1 m 1 4 5H x, y f , d exp x d 

  
      

 

Where 1
1
  and 1

2
  denote the inverse of the linear 

operators 1  and 2 , respectively, and di (i = 1,2,…,5) 

are integration constants to be determined through  

the boundary conditions (58).  

Since the high-order deformation equations are linear 

and uncoupled, in principle, they can be solved 

recursively starting from m = 1 up to any desired order by 

means of a symbolic computation software such as 

Mathematica required that the auxiliary functions Hf (η) 

and Hθ (η) are specified. Conforming to the rules of 

solution expression (Eqs. (30) and (31)), the following 

auxiliary functions are employed in the present analysis:  

     f 0H x H x exp x                                          (61) 

 

CONVERGENCE OF THE HAM AND VALIDATION 

As it is observed from the solution procedure  

of the previous section, there are three auxiliary parameters, 

namely, ћf, ћθ, and λ, which have to be specified to make 

the HAM solution applicable Liao [45]. In general, for  

a given Prandtl number and the nanoparticles volume 

fraction, the effects of the auxiliary parameters λ, ћf, and 

ћθ on the convergence of the series solution are investigated,



Iran. J. Chem. Chem. Eng. Effects of Viscosity Variations on Buoyancy-Driven Flow ... Vol. 38, No. 1, 2019 

 

Research Article                                                                                                                                                                  221 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Effects of λ and ћ on the 12th-order OHAM approximations for Pr = 1: (a) λ-curve; (b) ћ-curve ratio. 

 

and based on the obtained results proper values of the 

parameters are selected. f''(0,y) and θ'(0,y) are related to 

the skin friction and thermal flux at the cylinder surface, 

respectively. Hence, the effects of the auxiliary 

parameters on the convergence of f''(0,y) and θ'(0,y)  

are examined here. 

Figure 4(a) shows the variations of f''(0,y) and θ'(0,y) 

with respect to λ for Pr = 1 and y = π/6, and for three 

different values of ћ, namely, -0.4, -0.6, and -0.8, using 

12th-order series approximations. As can be seen  

from this figure, f''(0, π/6) and θ'(0, π/6) both converge for  

λ = 0.8. Using the same series approximations as in Fig. 4 

and for λ = 0.8, it is observed from Fig. 4(b) that f''(0,π/6) 

and θ'(0,π/6) are convergent for -0.8 ≤ ћ ≤ -1.3. Note that 

the admissible range of ћ for convergence is the region 

for which ћ-curves are horizontal. Each value of ћ 

belonging to this region yields a converged solution  

but with a different rate of convergence [45].  

 
OHAM framework 

As far as the admissible range of the auxiliary 

parameters for the nanofluids is concerned, a procedure 

similar to the one used for Pr = 1 should be conducted for 

the nanofluids with various nanoparticles volume 

fractions. In fact, the interval for the admissible values of 

ћ varies as the nanoparticles volume fraction, Prandtl 

number, and nanofluid models change. Theoretically,  

at the mth-order of approximation, the exact form of square 

residual errors can defined as  

m m

i,m i j j

j 0 j 00

N f , dxdy, i 1,2



 

  
     
    

               (62) 

It should be noted that Δi,m holds at most three 

unknown convergence-control parameters λ, ћf, and ћθ 

regardless of the order of approximation. Evidently, more 

quick reduction in Δi,m to zero, expedites the convergence 

of the corresponding homotopy-series solution. Thus,  

in practice, at a given order of approximation m,  

the corresponding optimal values of the three mentioned 

convergence-control parameters, namely, λ, ћf, and ћθ  

can be obtained by the minimizing of Δi,m, corresponding 

to the following set of three nonlinear algebraic equations  

i,m i,m i,m

f

, ,


  

  
                                            (63) 

Unfortunately, the calculation procedure of the exact 

square residual error Δi,m established by Eq. (62) 

consumes too much CPU even at low-order of 

approximations, and thus, is often unfavorable. To 

overcome this flaw, Liao [55] introduced a more efficient 

definition of the residual error to replace Eq. (62). Thus, 

achieving a substantially reduced in the CPU time,  

the so-called averaged residual error is employed as follows: 

   

2
K m m

i,m i j j

s 0 j 0 j 0

1
E N f s x,s y , s x,s y

K   

  
       
    

   (64) 

i=1,2 

Where Δx = 10/K, Δy = 10/K, and K = 20 for the 

present problem. The above expression for the averaged 

residual error may grant good enough approximation  

of the optimal convergence-control parameters. Moreover, 

the CPU time span for calculating the averaged residual 

error, Ei,m is much less than that of the exact residual 

error Δi,m (Fig. 5). The optimal values of λ and ћ for three 
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Table 3: Optimal values of ћ and λ for different values of ϕ using 12th-order series approximations 

 Al2O3-Water (Model I) Al2O3-Water (Model II) 

ϕ ћf = ћθ = ћ λ ћf = ћθ = ћ λ 

0.00 - 0.50 0.60 - 0.50 0.60 

0.05 - 0.405 0.57 - 0.412 0.52 

0.10 - 0.484 0.53 - 0.365 0.475 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Comparison of Residual Error versus CPU time 

(seconds) for HAM and OHAM approaches. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Comparisons between present 14th-order OHAM 

solutions with the experimental results of Churchill and Chu [56] 

for different Prandtl numbers. 

 

different values of the volume fractions of the Al2O3 

nanoparticles (Models I and II) at 12th-order series 

approximations are presented in Table 3.  

 

Validation 

In order to validate the solution procedure, the natural 

convection boundary-layer flow and heat transfer along  

a heated horizontal circular cylinder immersed in a cold 

fluid is solved using the proposed OHAM for three 

Prandtl numbers, namely, 0.1, 1 and 10. The obtained 

results for the average heat transfer coefficient from  

the cylinder ( DNu ) are compared with the experimental 

results of Churchill and Chu [56] for a range of RaD from 

10 to 106. Here, DNu  and RaD are the average Nusselt 

number and the Rayleigh number defined based on the 

diameter of the cylinder, respectively. As Fig. 6 depicts, 

very good agreements exist between the experimental results 

and the 14th-order OHAM series solutions of the average 

Nusselt number from the cylinder for the entire range of 

the considered Rayleigh numbers.  

Using air (Pr = 0.71) as the working medium, Table 4 

shows a comparison between DNu  obtained by the present 

homotopy analysis with the existing semi-analytical, numerical, 

and experimental results in the literature for a range of Rayleigh 

numbers between 10 and 108. As it can be observed from  

the table, very good agreements exist between the present results 

and the results of the other research work for the entire range of 

the considered Rayleigh numbers.  

 
RESULTS AND DISCUSSION 

Having explored the convergence characteristics  

of the proposed OHAM, and compared the results obtained 

by its application to the two test cases with those 

available in the literature, the OHAM is utilized to 

investigate the buoyancy-driven flow and heat transfer 

characteristics along the heated horizontal circular 

cylinder immersed in Al2O3-water nanofluid shown in 

Fig. 1. The Brinkman formula and Maïga et al.’s 

correlation are employed for the effective viscosity of 

Al2O3-water nanofluid. The results are presented for three 

volume fractions of the nanoparticles, namely, 0.0 (the 

base fluid), 0.05, and 0.1.  

Figs. 7(a) and (b) show the vertical velocity 

component and the dimensionless temperature with 
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Table 4: Comparisons of the present results for  with those of other researchers for free convection from  

a heated horizontal cylinder immersed in air (Pr = 0.71). 

  Value of RaD (= gβ(Tw-T∞)D3/(να)) 

Reference Method 10 102 103 104 105 106 107 108 

Present work OHAM 0.769 1.368 2.43 4.32 7.69 13.6 24.3 43.2 

Davis [57] EXP – – 2.64 4.7 8.36 14.9 – – 

Koch [58]  EXP – – – 4.12 7.33 13.7 – – 

Senftleben [59] CLM 1.21 1.64 2.74 4.87 8.66 15.4 27.4 48.7 

Merk and Prins [60] NSE – – – 4.36 7.76 13.8 24.5 43.6 

Muntasser and Mulligan [61] LNS – – – 4.3 7.64 13.6 24.2 43 

Clemes et al. [62] EXP – 2.03 2.99 4.74 7.85 13.3 23.3 – 

CLM: conduction layer model; EXP: experimental; OHAM: optimal homotopy analysis method; LNS: local non-similarity solution; and NSE: 

numerical solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: 14th-order OHAM solutions at y = π/6 using “Model I” for viscosity: (a) vertical velocity profiles; (b) temperature profiles. 

 

respect to the horizontal local coordinate x, and at y = π/6 

for Al2O3-water nanofluid with different volume fractions 

of nanoparticles, respectively. The Brinkman model for 

the viscosity of the nanofluid, and 14th-order OHAM 

approximations has been employed in this case. As it  

can be observed in Fig. 7(b), for high Prandtl numbers, a 

heated layer exists next to the wall where the temperature 

drops from Tw to T∞. This layer is ruled by the buoyancy 

~ friction balance. The vertical velocity component increases 

from zero at the wall to its peak close to the outer 

boundary of the heated layer (Fig. 7(a)). Outside this layer,  

the buoyancy is absent, and the nanofluid is dragged along 

viscously by the heated layer and restrained its own 

inertia. Hence, for high Prandtl numbers, the velocity 

decays to zero in a so-called the velocity boundary layer 

which is thicker than the thermal layer (Fig. 7(a)).  

As far as the nanoparticles volume fraction,  

the thickness of the heated layer increases with increasing 

the volume fraction of the nanoparticles (Figs. 7(a) and (b)). 

The scale analysis shows that, for high Prandtl numbers, 

the order of the ratio of heated layer thickness  
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Fig. 8: 14th-order OHAM solutions at y = π/6 using “Model II” for viscosity: (a) vertical velocity profiles; (b) temperature profiles. 

 

decreases mildly with enhancing the volume fraction of 

the nanoparticles (Fig. 3(b)), the right-hand-side of this 

relation still increases marginally with increasing  

the nanoparticles volume fraction. Hence, as Fig. 7(a) shows, 

the vertical velocity component tends to zero at larger 

values of x with increasing the volume fraction of  

the nanoparticles. It is also observed from Fig. 7(a) that 

the peak and the gradients of the vertical velocity component 

decrease with increasing the nanoparticles volume 

fraction. As ϕ increases, the Rayleigh number of  

the nanofluid decreases while its viscosity increases. 

Therefore, in the heated layer adjacent to the wall which 

is ruled by the buoyancy ~ friction balance, both the peak 

and the gradients of the vertical velocity component 

decrease as the buoyancy decreases and the nanofluid 

becomes more viscous.  

Figs. 8(a) and (b) show the vertical velocity 

component and the dimensionless temperature with 

respect to the horizontal local coordinate x for the Al2O3-

water nanofluid with different nanoparticles volume 

fractions, respectively. The Maïga's correlation for the 

effective viscosity of the nanofluid and 14th-order 

OHAM approximations has been employed in this case. 

It is observed from these figures that, similar to  

the results shown in Figs. 7(a) and (b), the thicknesses  

of the thermal and velocity boundary layers increase  

with increasing the volume fraction of the nanoparticles. 

However, compared to the results of Figs. 7(a) and (b), 

the increases of 
T
  and   are more in this case.  

The reductions of the peak and the gradients of the vertical 

velocity component with increasing ϕ are also more 

significant compared to what is shown in Fig. 7(a) (Fig. 8(a)). 

These behaviors are due to the fact that, in Maïga's 

correlation for the effective viscosity of the alumina-

water nanofluid,  
1 4
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Ra Ra
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1 2
Pr Pr  are both 

increasing functions of the nanoparticle volume fraction 

(Figs. 3(a) and (b)). Moreover, the Al2O3-water nanofluid 

viscosity as obtained by the Maïga's model (Model II) is 

generally higher than that predicted by the Brinkman 

model for the entire range of the considered nanoparticles 

volume fractions. Hence, in this case, with increasing  

the nanoparticles volume fraction, 
T
  and   increase more, 

and the peak of the vertical velocity component decreases 

more compared to the results presented in Fig. 7.  

Figs. 9(a) and (b) show the effect of variations of  

the nanoparticles volume fractions on streamline and  

the isotherms around the heated cylinder (0 ≤ x ≤ 2π and  

0 ≤ y ≤ π) for the Al2O3-water nanofluid, respectively. 
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(Model I), and 12th-order OHAM approximations  
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aT T a
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
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function of the nanoparticles volume fraction (Fig. 3(a)).  
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Fig. 9: Streamlines and isotherms for the viscosity of nanofluid (Model I) at 12th-order OHAM series solutions:  

(a) Streamlines; (b) isotherms. 

0.21

0.42

0.63

1.05

1.26

1.47

1.89

2.1

2.52

2.94

3.15

3.36

3.57

0 1 2 3 4 5 6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

y

0.
06

6

0.
19

8
0.

33

0.
46

2
0.

52
8

0.
59

4

0.
79

2
0.

85
8

0.
92

4

0 1 2 3 4 5 6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

y

0.2

0.4

0.6

1

1.2

1.4

1.8

2

2.4

2.8

3

3.2

3.4

0 1 2 3 4 5 6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

y

0.
06

6

0.
13

2

0.
19

8

0.
33

0.
39

6
0.

52
8

0.
59

4
0.

72
6

0.
85

8
0.

92
4

0 1 2 3 4 5 6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

y

0.2

0.4

0.6

1

1.2

1.6

1.8

2.2

2.4
2.8

3

3.2

3.4

0 1 2 3 4 5 6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

y

0.
06

6

0.
13

2

0.
19

8

0.
33

0.
46

2
0.

59
4

0.
72

6

0.
79

2
0.

85
8

0.
92

4

0 1 2 3 4 5 6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

y

3.0 

 
2.5 

 
2.0 

 
1.5 

 
1.0 

 
0.5 

 
0.0 

0            1            2            3           4             5           6  

y
 

x 

3.0 

 
2.5 

 
2.0 

 
1.5 

 
1.0 

 
0.5 

 
0.0 

0            1            2            3           4             5           6  

y
 

x 

3.0 

 
2.5 

 
2.0 

 
1.5 

 
1.0 

 
0.5 

 
0.0 

0            1            2            3           4             5           6  

y
 

x 

3.0 

 
2.5 

 
2.0 

 
1.5 

 
1.0 

 
0.5 

 
0.0 

0            1            2            3           4             5           6  

y
 

x 

3.0 

 
2.5 

 
2.0 

 
1.5 

 
1.0 

 
0.5 

 
0.0 

0            1            2            3           4             5           6  

y
 

x 

3.0 

 
2.5 

 
2.0 

 
1.5 

 
1.0 

 
0.5 

 
0.0 

0            1            2            3           4             5           6  

y
 

x 



Iran. J. Chem. Chem. Eng. Habibi M.R. et al. Vol. 38, No. 1, 2019 

 

226                                                                                                                                                                  Research Article  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 10: Streamlines and isotherms for the viscosity of nanofluid (Model II) at 12th-order OHAM series solutions:  

(a) Streamlines; (b) isotherms 
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0 ≤ y ≤ π), for the Al2O3-water nanofluid with different 

volume fractions of nanoparticles, respectively. The nanofluid 

effective viscosity via Maïga’s correlation (Model I)   

and 12th-order OHAM approximations have been employed  

in this case. It is observed from these figures that, similar 

to the results shown in Figs. 9(a) and (b), the values of 

the stream function field decrease and the isotherms 

become less compact with increasing the nanoparticles 

volume fraction. However, compared to the results of 

Figs. 9(a) and (b), 
T
  and   increase more in this case. 

Besides, the reductions of the stream-function values and 

the gradients of the temperature field with increasing ϕ 

are more significant compared to those of Figs. 9(a) and (b) 

as the viscosity of the Al2O3-water nanofluid as  

attained by the Maïga’s correlation is generally higher 

than that predicted by the Brinkman model for the entire 

range of the considered nanoparticles volume fractions.  

Figs. 11(a) and (b) show the analytical results for the 

local skin-friction coefficient (Eq. (32)) and the local 

Nusselt number Nua Raa
-1/4 of the cylinder for different 

values of volume fractions of the Al2O3-nanoparticles, 

respectively. The Brinkman viscosity model, and  

12th-order OHAM approximations have been employed  

in this case. Regardless of the magnitude of the nanoparticles 

volume fraction, it is observed from Fig. 11(a) that  

the highest heat transfer rate occurs at the lower stagnation 

point of the circular cylinder (y ≈ 0.0), and by moving 

along the periphery of the cylinder toward the upper 

stagnation point (y ≈ π), the Nusselt number gradually 

decreases. The skin-friction coefficient initially increases 

by moving from the lower stagnation point to the 

maximum value at y approximately equal to 2π/3, and 

then decreases toward the top of the cylinder (Fig. 11(b)).  

As far as the effects of the volume fraction of 

nanoparticles, it is observed from Fig. 11 that, in general, 

both the local skin-friction coefficient and the local 

Nusselt number increase with increasing of ϕ. The 

increase in the shear stress is due to the fact that the 

viscosity of the nanofluid is generally an increasing 

function of the volume fraction. Moreover, the 

enhancement of the local heat transfer coefficient  

can be attributed to the fact that the increase of the thermal 

conductivity of the nanofluid with the volume fraction of 

the nanoparticles compensates the effect of the reduction 

of the buoyancy force which tends to decrease with  

an increase in the nanoparticles volume fraction.  

Employing the Maïga’s viscosity correlation for the 

Al2O3-nanofluid (Model II), the 12th-order OHAM 

approximate solutions for the local skin-friction 

coefficient and the local Nusselt number with respect to y 

for different values of the volume fractions of the 

nanoparticles ϕ, are presented in Figs. 12(a) and (b), 

respectively. The results show similar trends to those of 

Figs. 11(a) and (b) except that the local heat transfer 

coefficient is a decreasing function of the nanofluids 

volume fraction (Fig. 12(b)). The reason being that  

the decreasing of the inertia with increasing the nanoparticles 

volume fraction seems to overcome the thermal conductivity 

enhancement when the Maïga’s correlation is employed 

to model the nanofluid viscosity. Moreover, it is observed 

from Fig. 12(b) that the increase of the local skin-friction 

coefficient with increasing the volume fraction of the 

nanoparticles is more significant compared to that of Fig. 11(b).  

The variations of the average Nusselt number defined 

based on the diameter of the cylinder  with the volume 

fraction of the nanoparticles for the Al2O3-water nanofluid 

(Model I and II) are presented in Fig. 13. The results  

are obtained using the 14th-order OHAM approximations. 

For the Al2O3-water nanofluid (Model I), the temperature 

gradients at the cylinder surface decrease and the heated 

layer enlarge with increasing the nanoparticles volume 

fraction (Fig. 7(b)). However, the enhancement of the thermal 

conductivity of the nanofluids with the nanoparticles volume 

fraction is large enough to render the average Nusselt 

number an increasing function of ϕ. For the alumina-water 

nanofluid (Model II), the temperature gradients at the wall 

decrease significantly with increasing the volume fraction 

parameter ϕ (Fig. 8(b)). Hence, as Fig. 13 exhibits,  

with increasing the nanoparticles volume fraction, the average 

Nusselt number decreases in this case. However, it should be 

noted that, basically, there are uncertainties correspond  

to the nanofluids viscosity behavior. Generally, this is due to  

the different experimental conditions and setups, as well as 

various flow regimes which definitely affect the resulting 

correlations. Many researchers are still working on this issue.   

Based on the above results, the following correlations 

are proposed for the average Nusselt numbers of  

the nanofluid in terms of the diametrical-based Rayleigh 

number and the volume fraction of the nanoparticles:  

  1 40.6817
D DNu 0.4667 0.1213 Ra                            (65) 

for     (Model I) 
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Fig. 11: Local Nusselt number and skin friction coefficient versus ϕ using “Model I”:  

(a) local Nusselt number; (b) skin-friction coefficient. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12: Local Nusselt number and skin friction coefficient versus ϕ using “Model II”:  

(a) local Nusselt number; (b) skin-friction coefficient. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13: Variations of the average Nusselt number with the 

volume fraction of the nanoparticles (Solid lines: correlated 

curves; red spot: calculated via OHAM). 

  1 41.35014
D DNu 0.4667 1.0761 Ra                           (65) 

for     (Model II) 

 
CONCLUSIONS 

The uncertainties of viscosity on buoyancy-driven fluid 

flow and heat transfer along a horizontal heated circular 
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investigated via the Optimal Homotopy Analysis Method 

(OHAM). The validity of the solution procedure is 

demonstrated through the consenting results of the OHAM 

and the experimental and numerical solutions. The analytical 

solutions for the velocity and temperature fields obtained 

through the application of the OHAM to the above free 

convection, the problem is more  flexible and efficient 
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compared to the existing results in the literature. 

Moreover, choosing the optimal values for the auxiliary 

parameters through the convergence study guarantees  

a superior control on the convergence and accuracy of  

the solutions via OHAM framework.  

The results of the performed parametric study reveal that 

the average Nusselt number is accurately predicted for various 

Prandtl and Rayleigh numbers, and different working 

mediums such air and water. Moreover, it is concluded from 

the results that the enhancement or suppression of the heat 

transfer from the circular cylinder with increasing  

the volume fraction of the nanoparticles strongly depends  

on the viscosity model used for the nanofluid. Based on  

the results of the parametric study, different correlations  

are proposed for the average Nusselt number of the 

nanofluid in terms of the Rayleigh number (10 ≤ Ra ≤ 106), 

and the nanoparticles volume fraction (0.0 ≤ ϕ ≤ 0.10).  

The results of this study show that the OHAM is a promising 

analytical technique for solving highly nonlinear fluid flow 

and heat transfer problems.  

 

NOMENCLATURE 

a                                     Radius of the circular cylinder, m 

cp                       Specific heat at constant-pressure, J/kg.K 

D                                                             Tube diameter, m 

f                                          Dimensionless stream function 

g                                        Gravitational acceleration, m/s2 

h                                    Heat transfer coefficient, W/m2 K 

k                                          Thermal conductivity, W/m.K 

Nu                                                    Local Nusselt number 

Nu                                               Average Nusselt number 

Pr                                                         Prandtl number, /a 

q"                                                  Surface heat flux, W/m2  

Ra                                      Rayleigh number, gTa3/() 

T                                                                 Temperature, K 

u,                  Dimensionless velocities in (x,y) directions 

x,y                                            Dimensionless coordinates 

 
Greeks 

                                       Thermal diffusivity, k/cp, m2/s 

                                  Thermal expansion coefficient, K-1 

                               Velocity boundary layer thickness, m 

T                             Thermal boundary layer thickness, m 

                                Dimensionless temperature function 

                                                    Dynamic viscosity, Pa s 

                                                 Kinematic viscosity, m2/s 

                                                                  Density, kg/m3 

w                                                        Wall shear stress, Pa 

                                     Volume fraction of nanoparticles 

                                                                Stream function 

 

Subscripts 

D                                                                           Diameter 

f                                                                Base fluid, water 

nf                                                                         Nanofluid 

p                                                                              Particle 

w                                                                         Tube wall 

                                                                            Ambient 

 

Superscripts 

                                                                      Dimensional 

                                                                         Nanofluid 
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