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ABSTRACT: The corrosion inhibition effect of N,N′-bis(n-Hydroxybenzaldehyde)-1,3-

Propandiimine on mild steel has been investigated in 1 M HCl using electrochemical impedance 

spectroscopy. A predictive model was presented for Nyquist plots using an artificial neural network. 

The proposed model predicted the imaginary impedance based on the real part of the impedance  

as a function of time. The model took into account the variations of the real impedance and immersion 

time of steel in a corrosive environment, considering constant corrosion inhibitor concentrations. 

The best-fit training data set was obtained with eleven neurons in the hidden layer for Schiff base 

inhibitor, which made it possible to predict the efficiency. On the validation data set, simulations 

and experimental data test were in good agreement. The developed model can be used  

for the prediction of the real and imaginary parts of the impedance as a function of time. 
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INTRODUCTION 

Acid solutions with pH values below one are 

generally used for industrial acid cleaning, acid descaling, 

oil well acidizing, the pickling and removal of undesirable 

rust [1]. Mild steel which is extensively used in a lot of 

industrial processes could corrode during these acidic 

applications particularly with the use of HCl [2,3]. 

The use of inhibitors is one of the most practical 

methods for protection against corrosion, especially  

in acidic media. Many studies have been made on the 

corrosion and inhibition of steels in acidic solution [4-6]. 

Among numerous inhibitors that have been tested and 

applied industrially, those that are nontoxic or of low 

toxicity, are now far more strategic than in the recent 

past. Organic compounds bearing heteroatoms with high 

electron density such as phosphor, sulfur, nitrogen, 

oxygen or those containing multiple bonds which  

 

 

 

are considered as adsorption centers, are effective  

as corrosion inhibitors [7-10]. 

Schiff base, the condensation product of aldehydes  

or ketones with amines is shown to have effective  

corrosion inhibitions for different metals and alloys  

in acidic media [11]. The efficiency of the Schiff base  

is much higher than that of the corresponding aldehyde 

and amines, and this may be due to the presence of  

a -C=N-group in the molecules [12,13]. 

Different experimental electrochemical techniques are 

used to study the corrosion inhibition behavior of 

inhibitors in different environments [14]. Impedance 

spectroscopy is an electrochemical technique used in 

corrosion studies. This method uses an alternating current 

(AC) that is applied over an electrode to obtain the 

corresponding response. Electrochemical impedance  
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can be extended by using Artificial Neural Network (ANN) 

[15-17]. ANNs are computational systems that correlate a 

pattern between groups of input observations (real data) 

and a group of output observations (results). ANN can be used 

to predict different impedance Nyquist plots from 

different inhibitor concentrations without experimentation  

in the time domain [15-17]. 

Neural networks are parallel-distributed information 

processing systems used for empirical regression and 

classification modeling [18-22]. A neural network  

is trained on a set of examples of input and output data. 

The outcome of this training is a set of coefficients  

(called weights) and a specification of the functions which is 

in combination with the weights relate the input  

to the output. Once the network is trained, the estimation  

of the outputs for any given inputs is very rapid [23,24]. 

Artificial Neural Network (ANN) consists of artificial 

neurons grouped into layers that are put in relation  

to each other by parallel connections [25]. For every ANN, 

the first layer constitutes the input layer (input variables) 

and the last one forms the output layer (output variables). 

Between them, one or more neuron layers called hidden 

layers may be located. The most widely used transfer 

function for the input and a hidden layer is the sigmoid 

transfer function which may be expressed as: 

 
 

1
f x

1 exp x


 
                                                       (1) 

The sigmoid transfer function takes the input, which 

can have any value between plus and minus infinity,  

and squashes the output into the range -1 to 1. The linear transfer 

function used as the output layer transfer function [26]: 

f(x) x                                                                          (2) 

The standard network structure for an approximation 

function is the feedforward network. The feedforward 

network often has one or more hidden layers of sigmoid 

neurons followed by an output layer of linear neurons [27]. 

Multiple layers of neurons with nonlinear transfer 

functions allow the network to learn nonlinear and linear 

relationships between input and output vectors. The linear 

output layer lets the network produce values outside the 

−1 to +1 range [28]. For the network, the appropriate 

notation is used in two-layer networks [29].  

The associated coefficients with the hidden layer are grouped 

into matrices Wi (weights) and b1 (biases) as well as  

the associated coefficients with the output layer are grouped 

into matrices Wo and b2. The number of neurons in the 

input and output layers is given, respectively, by the 

number of input and output variables in the process under 

investigation. The optimal number of neurons in the 

hidden layer(s) is difficult to specify and depends on the 

type and complexity of the process, or experimentation. 

This number is usually iteratively determined. 

The purpose of the present study is to investigate  

the inhibition effect of synthesized Schiff base N,N′-bis(3-

Hydroxybenzaldehyde)-1,3-Propandiimine on corrosion 

of mild steel in 1 M HCl. The experimental method of 

Electrochemical Impedance Spectroscopy (EIS) was used 

to study the inhibition effect. Artificial neural network 

model was applied to predict different impedance Nyquist 

plots without experimental variations in the time domain. 

Neural network model was developed and trained  

with experimental data from impedance to know the 

performance of corrosion inhibitor. The obtained results 

by the neural network model were compared with tested 

experimental data. 

 

EXPERIMENTAL SECTION 

All chemicals used in present work were of reagent-

grade Merck product and used as received without further 

purification. Schiff base was prepared according to the 

described procedure [13,30]. To a stirred ethanolic 

solution (20 mL) of 1,3-diaminopropane (0.074 g, 1 mmol), 

3-hydroxybenzaldehyde (0.122 g, 2 mmol) was added. 

The light yellow to the light brown solution was stirred  

and heated to reflux for 6 h. A light yellow to light brown 

precipitate was obtained that was filtered off and washed 

with diethyl ether, Yield (98%). Analysis calculated  

for C17H18N2O2 (282.3): C, 72.32; H, 6.42; N, 9.92. 

Found: C, 72.75; H, 6.01; N, 9.99%. Identification of  

the structure of the synthesized Schiff base was performed  

by IR, 1HNMR and 13C-NMR spectroscopic techniques.  

The Schiff base used in this study is presented in Fig. 1.  

Working electrodes were prepared from Mild steel 

specimens with chemical composition (wt.%)  C=0.16%, 

Si=0.32%, Mn=0.35%, P=0.03%, S=0.02%, and  

the remainder Fe. Samples were cut from a cylindrical rod 

with a cutter machine. The exposed surface area of each 

electrode is equal to 0.81 cm2. These specimens were used  

as the working electrode in electrochemical measurements 

and the exposed areas of the electrodes were mechanically 
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Fig. 1: The chemical structure of the Schiff base, N,N′-bis(3-

Hydroxybenzaldehyde)-1,3-Propandiimine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Nyquist plots for mild steel in 1 M HCl (1) without and 

(2) with 2×10-4 M inhibitor. 

 

abraded with 220, 400, 600, 800, 1000 and 1200 grades 

of emery paper, degreased with acetone and rinsed  

by distilled water before each electrochemical experiment. 

Electrochemical measurements were carried out  

in a conventional three-electrode system. A Saturated 

Calomel Electrode (SCE) was used as the reference 

electrode and a platinum sheet was used as the counter 

electrode. Before each experiment, the working electrode 

was immersed in the test cell for 30 min until to reach 

steady state condition. The electrochemical measurements 

were carried out using computer controlled Auto Lab 

potentiostat/galvanostat (PGSTAT 302N). All tests  

were carried out at constant temperatures by controlling  

the cell temperature using a water bath. All the experiments 

were performed in quiescent conditions and the  

solutions were open to the atmosphere under unstirred 

conditions. 

Electrochemical Impedance Spectroscopy (EIS) 

measurements were carried out in the frequency range of  

100 kHz to 10 MHz with an amplitude of 10 mV peak-to-peak 

using AC signals at open circuit potential. Fitting of 

experimental impedance spectroscopy data to the 

proposed equivalent circuit was done by means of home 

written least square software based on the Marquardt 

method for the optimization of functions and Macdonald 

weighting for the real and imaginary parts of the 

impedance [31,32]. 

 

RESULTS AND DISCUSSION 

Electrochemical impedance spectroscopy  

Fig. 2 shows Nyquist plots recorded for the corrosion 

of steel in 1 M HCl solution in the absence and presence 

of inhibitor obtained at Ecorr. The plots indicate  

a depressed capacitive loop which arises from the time 

constant of the electrical double layer and charge transfer 

resistance. The impedance of the inhibited steel increases 

in the presence of inhibitor and consequently results  

the inhibition behavior of this compound. The equivalent 

circuit compatible with the Nyquist diagram recorded 

with and without inhibitor was depicted in Fig. 3. 

The simplest approach requires the theoretical transfer 

function Z (ω) to be represented by a parallel 

combination of a resistance Rct and a capacitance C,  

both in series with another resistance Rs [33]: 

  s
ct

1
Z R

1/ R i C
  

 
                                             (3) 

ω is the angular frequency in rad/s, ω = 2πf, and f is 

the frequency in Hz. 

To obtain a satisfactory impedance simulation of 

steel, it is necessary to replace the capacitor (C) with  

a constant phase element (CPE) Q in the equivalent circuit. 

The most widely accepted explanation for the presence of 

CPE behavior and depressed semicircles on solid 

electrodes is microscopic roughness, causing an 

inhomogeneous distribution in the solution resistance  

as well as in the double-layer capacitance [34]. Constant 

phase element CPEdl, Rs and Rct can correspond  

to double layer capacitance, solvent resistance, and charge 

transfer resistance respectively. To corroborate the 

equivalent circuit, the experimental data are fitted  

to the equivalent circuit and the circuit elements are 

obtained. Table 1 illustrates the equivalent circuit parameters 
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Table 1: Impedance data for steel in 1 M HCl solution without and with inhibitor. 

Concentration/M Rs/ Ω Rct / Ω Qdl×103/ F n 

Blank 1.5 42 2.5 0.86 

2.0×10-4 1.4 81 0.5 0.92 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Equivalent circuits compatible with the experimental 

impedance data in Fig. 2 for corrosion of steel electrode 

without and with inhibitor. 

 

for the impedance spectra of corrosion of steel in 1 M 

HCl solution.  

The results demonstrate that in the presence of 2×10-4 M 

inhibitor, the double layer capacitance decreases and  

the charge transfer resistance enhances. The decrease  

in Qdl values is caused by adsorption of inhibitor indicating 

that the exposed area decreases. On the other hand,  

a decrease in Qdl, which can result from a decrease in local 

dielectric constant and/or an increase in the thickness of 

the electrical double layer, suggests that Schiff base 

inhibitor acts by adsorption at the metal–solution 

interface. 

As the Qdl exponent (n) is a measure of the surface 

heterogeneity, values of n indicate that the steel surface 

becomes more homogeneous in the presence of inhibitor 

as a result of its adsorption on the steel surface and 

corrosion inhibition [35].  

The effect of immersion time was determined  

by exposing the mild steel in 1 M HCl solution containing 

an inhibitor. Electrochemical impedance method is a useful 

technique for long time tests; because it does not disturb the 

system significantly and it is possible to follow  

it overtime. Therefore, the results were followed by EIS, 

and impedance spectra were measured in different 

exposure times. Time dependency of mild steel in 1 M 

HCl solution in the presence of 2×10−4 M of inhibitor  

are presented in Fig. 4 and the corresponding impedance 

parameters are indicated in Table 2. The inhibition 

efficiency of studied Schiff base increases with increasing 

immersion time from 30 min to 24 hr. This increase  

in IE% is probably due to the more complete and stable 

surface coverage of the electrode with inhibitor molecules 

and an improvement in the quality of the protective film 

with time. In addition, the double layer capacitance 

decreases with increasing immersion time due to  

the completion of the inhibitor layer. In higher immersion 

time the charge transfer resistance decreases which is  

due to the deterioration of the inhibitor layer. 

 

Neural network 

The obtained experimental database was split into 

three parts: a training set containing 70% of the data  

(350 random observations), a validation set containing 

10% of the data (50 random observations) and testing set 

containing 20% of the data (100 observations).  

The experimental data from the Nyquist plot obtained  

in the presence of inhibitor during 30 min, 1, 4, 8, 12, 16, 

20, 24, 26 and 30 h immersion were used for training  

the neural network model. Number of input data used  

in the network is 500. 

For the purpose of this work a feedforward network 

consisting of two layers was tested: a hidden layer with 

11 neurons and an output linear layer with 1 neuron  

to determine the imaginary impedance evolution for 

different immersion times in a constant inhibitor 

concentration (Fig. 5). The transfer function used in  

the hidden layer is hyperbolic tangent sigmoid transfer 

function (tan sig): 

2n

2
tansig(n) 1

1 e
 


                                                 (4) 

The input layers for these neural network models 

were real impedance and time (in hours). All calculations 

were carried out with MATLAB software version 

7.12.0.635 (R2011a) and Neural Network Toolbox 

version 7. In order to determine the optimal number of 

hidden layer nodes, neural networks with different 
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Table 2: Impedance data for steel in different immersion time in 1 M HCl solution in the presence of inhibitor. 

Concentration/M Rs/ Ω Rct/ Ω Qdl×103/ F n 

30 min 1.4 81 0.5 0.92 

1 h 1.4 107 0.4 0.91 

4 h 1.3 145 0.4 0.91 

8 h 1.3 205 0.3 0.90 

12 h 1.4 206 0.4 0.88 

16 h 1.2 275 0.2 0.93 

20 h 1.2 253 0.3 0.91 

24 h 1.3 241 0.3 0.91 

26 h 1.2 202 0.6 0.88 

30 h 1.2 227 0.5 0.89 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: The effect of immersion time on mild steel in 1 M HCl 

in the presence of 2×10−4 M inhibitor: (1) 30 min, (2) 1h, (3) 4 h, 

(4) 8 h, (5) 12 h, (6) 16 h, (7) 20 h, (8) 24 h, (9) 26 h and  

(10) 30 h. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Neural architecture. 

a number of hidden layer nodes were trained.  

For the experimental data used to train the network, the optimum 

number of hidden layer nodes was chosen when the error 

was minimum by varying the learning rate and 

momentum. For selecting the number of neurons in  

the hidden layers, it is necessary to consider that if too few 

neurons are used, the ANN is not capable of fitting  

an input-output mapping, but if too many neurons are used 

overfitting can happen [36]. The performance of  

the model at different hidden neuron levels is shown in Fig. 6. 

The number of evaluated neurons range from 1 to 12. 

Neurons more than 12 were not tried in order to avoid 

over-fitting [37]. It can be observed that the ANN model 

with 11 hidden neurons produce the best performance and  

is considered to be the optimal configuration for the present 

problem. According to the obtained model, Table 3 gives 

the optimum coefficients (Wi, Wo, B1, and B2) of the best 

fit of the model for nine neurons in the hidden layer. 

The predictability of the developed model is 

quantified in terms of the correlation coefficient (R). 

These are defined below: 

  

   

N

i ii 1

2 2N N

i ii 1 i 1

E E P P
R

E E P P



 

 


 



 
                             (5)  

Where E is the experimental finding and P is  

the predicted value obtained from the neural network model. 

E  and P  

 

are the mean values of E and P respectively [37]. 

A good model would have most of the points close  

to the diagonal line [38]. Fig. 7 presents the simulated 
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Table 3: Adjusted parameters for the best neural network. 

Wi1 

-0.281 5.557 

-0.334 10.851 

0.334 -1.785 

-0.811 0.777 

-1.268 -5.869 

5.712 36.610 

0.032 2.419 

0.136 1.792 

0.832 -7.767 

-5.629 0.072 

1.039 -10.808 

Wo2 

-30.32 13.7 -28.79 -15.43 -5.072 -0.386 16.35 -20.71 -21.75 20.46 19.54 

b1 

5.2113 9.965 -1.819 1.268 5.712 -5.289 -0.397 -0.151 7.361 -7.608 9.852 

b2 

31.79694 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Performances of the ANN model at various hidden 

neurons level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: Comparison of simulated and experimental Z values. 

 

 

imaginary impedance against the experimental imaginary 

impedance database for all Nyquist plots. It can be 

observed that a very good correlation between 

experimental and predicted data is obtained. No 

scattering in the data points can be observed throughout 

the data range. The correlation factor for the present 

model is R2=0.9952 indicating that the fit has a very high 

degree of accuracy. The distribution between predicted 

values and the experimental values are modeled using 

linear approaches and a best linear equation is obtained. 

The equation is also given in Fig. 7.  

According to these results, the developed model  

is able to predict the imaginary impedance as a function of 

input parameters throughout the experimental domain. 
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Fig. 8: Comparison of experimental and simulated Nyquist 

plots. 

 

Fig. 8 depicts the ability of the model to predict the 

impedance value as a function of time for 2×10−4 M of 

inhibitor. As can be seen, the simulated Nyquist diagrams 

are in good agreement with the experimental data. These 

models are important to determine the corrosion 

resistance over this experimental condition. The results 

obtained by the above analysis lead to the conclusion that 

the models are successful in predicting the impedance 

value as a function of time. This model is not too 

complex because the simulation is performed by simple 

arithmetic operations and, therefore, it can be used to 

predict Nyquist plots over different immersion times and 

to determine different impedance behavior with confidence. 

 

CONCLUSIONS 

This work showed that the neural network could be 

used in the electrochemical impedance techniques. The 

results of this study were: 

 ANN-based model was developed to simulate  

the imaginary impedance in the Nyquist plots and used  

a feed-forward network and an algorithm Levenberg-

Marquardt backpropagation modification to training the 

neural network. 

 The developed model could predict the Nyquist plot 

and the predicted response of this model was in very 

good agreement with experimental data. 

 This model was not complex because the simulation 

was achieved via simple arithmetic operations, and 

therefore it could be used for the estimation of the 

electrochemical impedance over a wide range of 

experimental conditions. 

 One of the highlights of this model was that it could 

spread without any preliminary assumptions on the 

underlying corrosion or chemical mechanisms. 
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