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ABSTRACT: Various antibacterial fluoroquinolone compounds were prepared by the direct 

amination of 7-halo-6- fluoroquinolone-3-carboxylic acids with a variety of piperazine derivatives 

and (4aR,7aR)-octahydro-1H-pyrrolo[3,4-b] pyridine using Zirconia Sulfuric Acid (ZrSA) 

nanoparticle, as a catalyst in the presence of ordinary or magnetized water upon reflux condition. 

The results showed that ZrSA exhibited high catalytic activity towards the synthesis of 

fluoroquinolone derivatives in two forms of water. However, the magnetized water showed better 

results. Furthermore, the catalyst was recyclable and could be reused at least three times without 

any discernible loss in its catalytic activity. Overall, this new catalytic method for  

the synthesis of fluoroquinolone derivatives provides rapid access to the desired compounds  

in refluxing water following a simple work‐up procedure, and avoids the use of harmful organic 

solvents. This method, therefore, represents a significant improvement over the methods currently 

available for the synthesis of fluoroquinolone derivatives. 
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INTRODUCTION 

Fluoroquinolones have been a class of important 

synthetic antibacterial agents which are widely used in 

the clinic for the treatment of infectious diseases [1, 2]. 

These compounds act with excellent activity against gram  

 

 

 

negative and comparatively moderate against gram-positive 

bacteria [3–7]. Mechanism of action of these compounds  

is based on the inhibition of an enzyme essential  

for bacterial DNA replication called DNA gyrase [8].  
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It also appears that some fluoroquinolones possess 

anticancer and even anti-HIV activities [9–11]. 

Despite the fact that there are still certain undesired 

events in the usage of fluoroquinolones for therapeutic 

purposes, fluoroquinolones are one of the most important 

antimicrobial agents with many advantages for clinical 

use. Therefore there has been a growing interest in the 

structural modification of the fluoroquinolone skeleton 

and in the development of its new derivatives with 

increasing efficacy to the prevention of hospital-acquired 

infections induced by fluoroquinolone-resistant pathogens 

[12–14]. Recent studies have shown that substituents at the 7-

position of the fluoroquinolone framework highly affect their 

biological activity, antimicrobial spectrum, strength and target 

preferences [15]. For example, piperazinyl moieties 

substitution at this position of fluoroquinolones which 

increase their basicity, lipophilicity and their ability to 

penetrate into cell walls which leads to a wide range of 

clinically beneficial fluoroquinolone such as ciprofloxacin, 

enrofloxacin, levofloxacin, etc. [16–18]. 

Many synthetic protocols have been developed to 

accelerate the rate of amination of fluoroquinolones and 

to improve the yield [19–29]. Major drawbacks of these 

procedures include expensive reagents, use of large 

amounts of toxic organic solvents, prolonged heating  

and side reactions or using the microwave. These 

disadvantages are not acceptable in the current 

pharmaceutical industry. Therefore, the development  

of a new greener and more convenient method for  

the synthesis of fluoroquinolones is highly desirable. 

Acid-catalysts which are one of the most frequently 

applied processes in the chemical industry have been a 

major area of research interest [30–32]. Commonly, 

liquid inorganic acids including H2SO4, HCl, and H3PO4 

are part of the homogeneous acid catalysts. Despite their 

application in the wide production of industrial 

chemicals, many disadvantages such as high toxicity, 

corrosive nature, hazards in handling and difficult 

separation from the products make them not so useful. 

Furthermore, the synthesis using homogeneous catalysts 

have a major problem of catalyst recovery and reuse. 

These difficulties are not in the range of green chemistry. 

According to these disadvantages, in order to improve 

drawbacks of these catalysts, replacement of them by 

novel, nontoxic, eco-friendly, recyclable heterogeneous 

catalysts with improved efficiency have been the 

important topics of researchers during the last decades. 

Heterogeneous catalysts show an important role in many 

aspects of environmental and economic in many 

industrial processes. They presented some excellence 

including great reactivity, operational simplicity, low 

toxicity, non-corrosive nature and the potential of the 

recyclability. Furthermore, most of the heterogeneous 

catalysts show better product selectivity, so that by-

product can be easily separated [33–38]. One of the 

important routes for developing novel heterogeneous 

catalysts is immobilizing of homogenous precursors on 

solid support [39–43]. 

The metal oxide nanoparticles such as TiO2, MgO, 

Al2O3, and ZnO are reported as useful heterogeneous catalyst 

agents in the synthesis of organic compounds [44-46]. 

Zirconia (ZrO2) is one of the most important metal oxide 

nanoparticles with high surface area, mechanical strength, 

and thermal stability which have wide application in the 

chemical industry especially as a catalyst [47].  

As part of our research program on the development 

of convenient methods using reusable catalysts for the 

synthesis of organic compounds [48–56], and as a result 

of global interest in the ongoing research towards  

the development of environmentally friendly methods for 

the synthesis of organic compounds, we report herein facile 

and efficient green synthesis of fluoroquinolones as 

potential antibacterial with short reaction time by the 

two‐ component condensation of variety amines and 

some 7-halo-6-fluoroquinolone-3-carboxylic acids using 

Zirconia Sulfuric Acid (ZrSA), as heterogeneous catalysts 

with high catalytic activity under reflux condition in 

ordinary or magnetized water. In the final, both forms of 

water exhibited excellent outcomes, but the magnetized 

water showed higher yields in shorter reaction times 

(Scheme 1). 

 

EXPERIMENTAL SECTION 

Chemicals and apparatus 

All chemicals were available commercially and used 

without additional purification. The catalyst was synthesized 

according to the literature [57]. Melting points were recorded 

using a Stuart SMP3 melting point apparatus. The FT-IR 

spectra of the products were obtained with KBr disks, using a 

Tensor 27 Bruker spectrophotometer. The 1H NMR (300 

MHZ) and 13C NMR (75 MHZ) spectra were recorded using 

Bruker spectrometers. 
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Scheme 1: Synthesis of fluoroquinolone derivatives in the presence of ZrSA under refluxing ordinary or magnetized water. 

 

Solvent Magnetizing Apparatus (SMA) 

The permanent magnet in a compact form, a unit 

called “AQUA CORRECT”, was used. This equipment  

is a coaxial static magnetic system with field strength of 

0.6 Tor 6000 gauss (H.P.S Co., Germany). The equipment 

was connected from one end to the liquid pump and  

the other end to the pipelines of the solvent reservoir. 

Solutions flow through a coaxial static magnetic and come back  

to the solvent reservoir. Therefore, the solution could pass 

through the field many times, in a closed cycle [59]. 

 

General 

A mixture of 7-chloro-1-cyclopropyl-6-fluoro-4-oxo-1,4-

dihydroquinoline-3-carboxylic acid 1a (1 mmol) and N-

ethylpiperazine 2y (1.5 mmol) and ZrSA (0.08 g) as 

catalyst in 5 ml of H2O (ordinary or magnetized)  

was heated under reflux for the appropriate time. The reaction 

was monitored by TLC. After completion of the 

transformation, the catalyst was removed by filtration  

and then the reaction mixture was allowed to cool down 

into room temperature. finally, the crude product was collected 

by filtration and washed with H2O and recrystallized 

from ethanol to give the desired compound 3ay.  

 

1-Cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-

dihydroquinoline-3-carboxylic acid (3aw)  

m.p.: 254-256 °C (lit. [23] 255-257 °C); FT-IR (ν, cm-1 

KBr disc): 3533, 3335, 3033, 2912, 1705, 1623, 1494, 1447, 

1383, 1271, 1144, 1024, 804; 1H NMR (300 MHz,  

DMSO-d6): δ 1.15-1.20 (m, 2H, CH2), 1.30-1.35 
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(m, 2H, CH2), 2.90 (t, J = 6.0 Hz, 4H, 2CH2), 3.22 (t, J = 6.0 

Hz, 4H, 2CH2), 3.75-3.85 (m, 1H, CH), 7.47 (d, J = 9.0 Hz, 

1H, C8H), 7.75 (d, J = 15.0 Hz, 1H, C5H), 8.58 (s, 1H, C2H); 
13C NMR (75 MHz, DMSO-d6): 7.9 (CH2), 36.2 (NCH), 45.8 

(2NCH2), 51.1 (2NCH2), 106.9 (C3), 107.1 (C8), 111.4 (C5), 

118.7 (C4a), 139.6 (C8a), 146.1 (C7), 148.2 (C2), 154.0 (C6), 

165.6 (COOH), 176.6 (C4); Anal. Calc. for C17H18FN3O3 (%): 

C, 61.62; H, 5.48; N, 12.68. Found: C, 61.54; H, 5.37; N, 

12.62. 

 
1-Cyclopropyl-6-fluoro-7-(4-methylpiperazin-1-yl)-4-

oxo-1,4-dihydroquinoline-3-carboxylic acid (3ax) 

m.p.: 245-247 °C (lit. [22] 248-250 °C); FT-IR  

(ν, cm-1 KBr disc): 3428, 3093, 2935, 1729, 1626,  

1507, 1469, 1378, 1299, 1142, 1007, 885; 1H NMR  

(300 MHz, DMSO-d6): δ 1.17 (s, 2H, CH2), 1.32  

(d, J = 9.0 Hz, 2H, CH2), 2.23 (s, 3H, NCH3), 2.20-2.35 

(m, 4H, 2CH2), 3.00-3.10 (m, 4H, 2CH2), 3.75-3.85  

(m, 1H, CH), 7.47 (d, J = 6.0 Hz, 1H, C8H), 7.75  

(d, J = 12.0 Hz, 1H, C5H), 8.62 (s, 1H, C2H); 13C NMR 

(75 MHz, DMSO-d6): 8.0 (2CH2), 31.2 (NCH3),  

36.3 (NCH), 45.9 (2NCH2), 49.4 (2NCH2), 106.0 (C3), 

107.1 (C8), 111.0 (C5), 118.0 (C4a), 139.6 (C8a), 146.1 

(C7), 148.3 (C2), 151.0 (C6), 166.3 (COOH), 176.7 (C4); 

Anal. Calc. for C18H20FN3O3 (%): C, 62.60; H, 5.84; N, 

12.17; Found: C, 62.53; H, 5.78; N, 12.11. 

 
1-Cyclopropyl-7-(4-ethylpiperazin-1-yl)-6-fluoro-4-oxo-

1,4-dihydroquinoline-3-carboxylic acid (3ay) 

m.p.: 218-220 °C (lit. [22] 219-221 °C); FT-IR  

(ν, cm-1 KBr disc): 3533, 3335, 3033, 2912, 1738, 1627, 

1470, 1381, 1337, 1254, 1154, 1022, 803; 1H NMR  

(300 MHz, DMSO-d6): δ 1.05 (t, J = 7.0 Hz, 3H, CH3), 

1.10-1.35 (m, 4H, 2CH2), 2.42 (q, J = 6.0 Hz, 2H, NCH2), 

2.50-2.60 (m, 8H, 4CH2, overlapped with solvent),  

3.75-3.85 (m, 1H, CH), 7.55 (d, J = 6.0 Hz, 1H, C8H), 

7.88 (d, J = 15.0 Hz, 1H, C5H), 8.65 (s, 1H, C2H), 15.23 

(s br., 1H, COOH); 13C NMR (75 MHz, DMSO-d6): 8.0 

(2CH2), 12.4 (CH3), 36.2 (NCH), 40.7 (NCH2), 49.8-52.4 

(4NCH2), 106.5 (C3), 107.1 (C8), 111.3 (C5), 118.8 

(C4a), 139.5 (C8a), 145.5 (C7), 148.1 (C2), 155.0 (C6), 

166.3 (COOH), 176.5 (C4); Anal. Calc. for C19H22FN3O3 

(%): C, 63.50; H, 6.17; N, 11.69; Found: C, 63.41; H, 

6.09; N, 11.62. 

1-Cyclopropyl-6-fluoro-7-((4aR,7aR)-hexahydro-1H-

pyrrolo[3,4-b]pyridin-6(2H)-yl)-4-oxo-1,4-

dihydroquinoline-3-carboxylic acid (3az) 

m.p.: 258-260 °C (lit. [24] 256-258 °C); FT-IR (ν, 

cm-1 KBr disc): 3504, 3308, 3076, 2938, 1719, 1629, 

1549, 1509, 1412, 1336, 1180, 1108, 888; 1H NMR 

(300 MHz, DMSO-d6): δ 1.10-1.35 (m, 4H, 2CH2), 

1.55-1.70 (m, 4H, 2CH2), 1.88 (m, 1H, CH), 2.08 (m, 

1H, CH), 2.50-2.60 (m, 1H, CH), 3.33 (t, J = 6.0 Hz, 

2H, CH2), 3.30-3.55 (m, 4H, 2CH2), 3.63-3.75 (m, 1H, 

CH), 6.91 (d, J = 6.0 Hz, 1H, C8H), 7.65 (d, J = 15.0 

Hz, 1H, C5H), 8.49 (s, 1H, C2H); Anal. Calc. for 

C20H22FN3O3 (%): C, 64.68; H, 5.97; N, 11.31; Found: 

C, 64.61; H, 5.59; N, 11.25. 

 

1-Cyclopropyl-6-fluoro-7-((4aR,7aR)-hexahydro-1H-

pyrrolo[3,4-b]pyridin-6(2H)-yl)-8 methoxy-4-oxo-1,4-

dihydroquinoline-3-carboxylic acid (3bz) 

m.p.: 239-241 °C (lit. [29] 238-242 °C); FT-IR (ν, cm-

1 KBr disc): 3529, 3470, 3033, 2929, 1708, 1624, 1517, 

1457, 1353, 1324, 1186, 1047, 805; 1H NMR (300 MHz, 

DMSO-d6): δ 0.81-1.25 (m, 4H, 2CH2), 1.63-1.85 (m, 

4H, 2CH2), 2.60-2.70 (m, 2H, CH2), 3.10-3.20 (m, 1H, 

CH), 3.37 (s, 3H, OCH3), 3.60-3.65 (m, 1H, CH), 3.70-

3.80 (m, 1H, CH), 3.80 -3.97 (m, 2H, CH2), 4.04-4.19 (m, 

2H, CH2), 7.63 (dd, J = 12.0, 3.0 Hz, 1H, C5H), 8.64 (s, 

1H, C2H), 15.15 (s br., COOH); 13C NMR (75 MHz, 

DMSO-d6): 8.8 (2CH2) 10.0 (CH2), 17.2 (CH2), 20.9 

(CH), 34.6 (NCH2), 39.1 (NCH), 41.1 (NCH2), 41.8 

(NCH), 54.4 (NCH2), 62.3 (OCH3), 106.8 (C3), 117.6 

(C5), 134.9 (C4a), 137.1 (C8), 140.6 (C8a), 150.8 (C7), 

151.7 (C2), 154.0 (C6), 166.3 (COOH), 176.4 (C4); Anal. 

Calc. for C21H24FN3O4 (%): C, 62.83; H, 6.03; N, 10.47; 

Found: C, 62.78; H, 5.94; N, 10.41. 

 

9-Fluoro-3-methyl-7-oxo-10-(piperazin-1-yl)-3,7-

dihydro-2H-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxylic 

acid (3cw) 

m.p.: 258-260 °C (lit. [27] 257-260 °C); FT-IR (ν, cm-

1 KBr disc): 3255, 3092, 2968, 1723, 1573, 1454, 1392, 

1254, 1023, 1011, 805; 1H NMR (300 MHz, DMSO-d6): 

δ 1.44 (d, J = 6.0 Hz, 3H, CH3), 2.80-2.85 (m, 4H, 2CH2), 

3.18-3.25 (m, 4H, 2CH2, overlapped with solvent), 4.37 

(d, J = 12.0 Hz, 1H, CH2, diastereotopic proton), 4.58 (d, 

J = 12.0 Hz, 1H, CH2, diastereotopic proton), 4.85-4.95 

(m, 1H, CH), 7.51 (dd, J = 12.0, 6.0 Hz, 1H, C5H), 8.91 
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(s, 1H, C2H); 13C NMR (75 MHz, DMSO-d6): 18.4 

(CH3), 46.6 (2NCH2), 52.0 (2NCH2), 55.2 (NCH), 68.4 

(OCH2), 103.6 (C5), 107.1 (C3), 120.0 (C4a), 125.2 

(C8a), 132.3 (C7), 140.5 (C8), 146.5 (C2), 154.0 (C6), 

166.5 (COOH), 176.7 (C4); Anal. Calc. for C17H18FN3O4 

(%): C, 58.78; H, 5.22; N, 12.10; Found: C, 58.72; H, 

5.17; N, 10.36. 

 

9-Fluoro-3-methyl-10-(4-methylpiperazin-1-yl)-7-oxo-

3,7-dihydro-2H-[1,4]oxazino[2,3,4-ij]quinoline-6-

carboxylic acid )3cx( 

m.p.: 253-255 °C (lit. [27] 250-257 °C); FT-IR  

(ν, cm-1 KBr disc): 3419, 3335, 3043, 2968, 1714, 1622, 

1523, 1469, 1371, 1255, 1146, 1056, 804; 1H NMR (300 

MHz, DMSO-d6): δ 1.44 (d, J = 9.0 Hz, 3H, CH3), 2.22 

(s, 3H, NCH3), 2.35-2.50 (m, 4H, 2CH2), 3.20-3.40 (m, 

4H, 2CH2), 4.35 (dd, J = 12.0, 3.0 Hz, 1H, CH2, 

diastereotopic proton), 4.59 (dd, J = 12.0, 3.0, 1H, CH2, 

diastereotopic proton), 4.85-4.98 (m, 1H, CH), 7.52 (d, J 

= 12.0 Hz, 1H, C5H), 8.95 (s, 1H, C2H), 15.17 (s br., 1H, 

COOH); 13C NMR (75 MHz, DMSO-d6): 18.4 (CH3), 

46.5 (NCH3), 50.5 (2NCH2), 55.2 (2NCH2), 55.7 (NCH), 

68.4 (OCH2), 103.5 (C5), 107.0 (C3), 119.8 (C4a), 125.2 

(C8a), 132.5 (C7), 140.5 (C8), 146.5 (C2), 154.2 (C6), 

166.5 (COOH), 176.7 (C4); Anal. Calc. for C18H20FN3O4 

(%): C, 59.83; H, 5.58; N, 11.63; Found: C, 59.77;  

H, 5.08; N, 11.58. 

 

(S)-9-Fluoro-3-methyl-7-oxo-10-(piperazin-1-yl)-3,7-

dihydro-2H-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxylic 

acid (3dw) 

m.p.: 260-262 °C (lit. [29] 263-265 °C); FT-IR  

(ν, cm-1 KBr disc): 3255, 3092, 2968, 1723, 1573, 1454, 

1392, 1254, 1023, 1011, 805; 1H NMR (300 MHz, 

DMSO-d6): δ 1.45 (d, J = 6.0 Hz, 3H, CH3), 2.75-2.85 

(m, 4H, 2CH2), 3.15-3.25 (m, 4H, 2CH2, overlapped with 

solvent), 4.30-4.40 (m, 1H, CH2, diastereotopic proton), 

4.52-4.62 (m, 1H, CH2, diastereotopic proton), 4.85-4.95 

(m, 1H, CH), 7.51 (d, J = 12.0 Hz, 1H, C5H), 8.92  

(s, 1H, C2H); 13C NMR (75 MHz, DMSO-d6): 18.4 

(CH3), 45.8 (2NCH2), 51.0 (2NCH2), 55.2 (NCH), 68.5 

(OCH2), 103.6 (C5), 107.2 (C3), 120.2 (C4a), 125.2 

(C8a), 132.3 (C7), 140.5 (C8), 146.5 (C2), 154.2 (C6), 

166.5 (COOH), 176.7 (C4); Anal. Calc. for C17H18FN3O4 

(%): C, 58.78; H, 5.22; N, 12.10; Found: C, 58.70; H, 

4.93; N, 11.51.  

(S)-9-Fluoro-3-methyl-10-(4-methylpiperazin-1-yl)-7-

oxo-3,7-dihydro-2H-[1,4]oxazino[2,3,4-ij]quinoline-6-

carboxylic acid (3dx)  

m.p.: 225-227 °C (lit. [25] 225-226 °C); FT-IR (ν, cm-1 

KBr disc): 3251, 3079, 2973, 1721, 1539, 1517, 1439, 

1394, 1289, 1087, 1004, 801; 1H NMR (300 MHz, 

DMSO-d6): δ 1.44 (d, J = 6.0 Hz, 3H, CH3), 2.22 (s, 3H, 

NCH3), 2.35-2.50 (m, 4H, 2CH2), 3.20-3.30 (m, 4H, 

2CH2), 4.36 (dd, J = 12.0, 3.0 Hz, 1H, CH2, diastereotopic 

proton), 4.59 (dd, J = 12.0, 3.0 Hz, 1H, CH2, 

diastereotopic proton), 4.85-4.95 (m, 1H, CH), 7.48 (d, J 

= 12.0 Hz, 1H, C5H), 8.94 (s, 1H, C2H), 15.15 (s br., 1H, 

COOH); 13C NMR (75 MHz, DMSO-d6): 18.4 (CH3), 

46.5 (NCH3), 50.5 (2NCH2), 55.2 (2NCH2), 55.7 (NCH), 

68.4 (OCH2), 103.8 (C5), 107 (C3), 120 (C4a), 125.2 

(C8a), 132.3 (C7), 140.4 (C8), 146.5 (C2), 154.2 (C6), 

166.5 (COOH), 176.7 (C4); Anal. Calc. for C18H20FN3O4 

(%): C, 59.83; H, 5.58; N, 11.63; Found: C, 59.78; H, 

5.50; N, 11.56. 

 

(S)-10-(4-Ethylpiperazin-1-yl)-9-fluoro-3-methyl-7-oxo-

3,7-dihydro-2H-[1,4]oxazino[2,3,4-ij]quinoline-6-

carboxylic acid (3dy) 

m.p.: 230-232 °C (lit. [26] 229-230 °C); FT-IR (ν, cm-1 

KBr disc): 3432, 3042, 2975, 1714, 1623, 1529, 1478, 

1306, 1243, 1200, 1010, 743; 1H NMR (300 MHz, 

DMSO-d6): δ 1.05 (t, J = 6.0 Hz, 3H, CH3), 1.45 (d, J = 

9.0 Hz, 3H, CH3), 2.35-2.40 (m, 2H, CH2, overlapped 

with solvent), 2.40-2.60 (m, 4H, 2CH2), 3.15-3.20 (m, 4H, 

2CH2), 4.37 (d, J = 12.0 Hz, 1H, CH2, diastereotopic 

proton), 4.57 (d, J = 9.0 Hz, 1H, CH2, diastereotopic 

proton), 4.91 (d, 1H, J = 6.0 Hz, CH), 7.56 (d, J = 12.0 

Hz, 1H, C5H), 8.94 (s, 1H, C2H); 13C NMR (75 MHz, 

DMSO-d6): 12.2 (CH3), 18.4 (CH3), 46.5 (NCH2), 50.5 

(2NCH2), 53.4 (2NCH2), 55.3 (NCH), 68.5 (OCH2), 

103.0 (C5), 107.0 (C3), 125.2 (C4a), 126.8 (C8a), 132.3 

(C7), 140.0 (C8), 146.7 (C2), 154.0 (C6), 166.5 (COOH), 

176.6 (C4); Anal. Calc. for C19H22FN3O4 (%): C, 60.79; 

H, 5.91; N, 11.19; Found: C, 60.72; H, 5.84; N, 11.11.  

 

(S)-9-Fluoro-10-((4aR,7aR)-hexahydro-1H-pyrrolo[3,4-

b]pyridin-6(2H)-yl)-3-methyl-7-oxo-3,7-dihydro-2H-

[1,4]oxazino[2,3,4-ij]quinoline-6-carboxylic acid (3dz) 

m.p.: 265-267 °C (lit. [24] 265-268 °C); FT-IR (ν, cm-

1 KBr disc): 3319, 3044, 2932, 1719, 1622, 1527, 1472, 

1357, 1191, 1087, 1045, 862; 1H NMR (300 MHz, 
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DMSO-d6): δ 1.30-1.70 (m, 4H, 2CH2), 1.45 (d, J = 6.0 

Hz, 3H, CH3), 2.10-2.20 (m, 1H, CH), 2.80-2.90 (m, 1H, 

CH), 3.15-3.40 (m, 4H, 2CH2), 4.00-4.15 (m, 2H, CH2), 

4.23 (d, J = 12.0 Hz, 1H, CH2, diastereotopic proton), 

4.59 (d, J = 12.0 Hz, 1H, CH2, diastereotopic proton), 

4.80-4.92 (m, 1H, CH), 7.4 (d, J = 15 Hz, 1H, C5H), 8.85 

(s, 1H, C2H); Anal. Calc. for C20H22FN3O4 (%): C, 62.01; 

H, 5.72; N, 10.85; Found: C, 61.96; H, 5.74; N, 10.78. 

 

RESULTS AND DISCUSSION 

Characterization of the catalyst 

For our investigations, the catalyst ZrO2–SO3H 

(ZrSA) was prepared according to the literature procedure 

[57]. The ZrSA catalyst was characterized by FT‐IR and 

pH analysis. The FT‐IR spectrum of the nano-ZrO2 and 

ZrO2–SO3H are shown in Fig. 1(1) and (2), respectively. 

In Fig. 1(1), the characteristic vibrational bands of the 

Zr–O appears at 576 and 752 cm–1, as well band 

belonging to the Zr–OH group at 1627 cm–1. The FT‐IR 

spectrum of the catalyst which contained absorbance 

band at 3421 cm–1, indicated the presence of water. These 

observations proved nano-ZrO2 structures which are 

consistent with the previously reported evidence [57, 58].  

The FT‐IR spectrum of the ZrSA catalyst prepared in the 

current study (Fig. 1(2)) revealed new bonds at 820-890 

and 1060–1180 cm–1 which are related to the O=S=O 

asymmetric and symmetric stretching vibration and S–O 

stretching vibration of the sulfonic groups (–SO3H), 

respectively. The appeared broadband around 2700–3600 

cm-1 related to the OH stretching absorption of the SO3H 

group. All these specifications acknowledge nano-ZrO2 

structure that has functionalized with sulfonic acid 

groups. The density of the SO3H groups was measured 

using NaOH (0.1 N) as titrant by acid-base potentiometric 

titration. The amount of SO3H in the catalyst was  

2.45 mmol/g. 

 

Evaluation of the catalytic activity of ZrSA in the 

synthesis of fluoroquinolone derivatives 

The catalytic activity of this material was evaluated in the 

synthesis of fluoroquinolone derivatives. At first, the 

synthesis of compound 3ay was selected as a model 

reaction to determine the most suitable reaction 

conditions. The reaction was carried out by the mixture of 

7-chloro-1-cyclopropyl-6-fluoro-4-oxo-1,4-

dihydroquinoline-3-carboxylic acid 1a (1 mmol) and 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: FT-IR spectra of ZrO2 (1), fresh catalyst ZrSA ((2), 

first run), and recovered catalysts (3-5). 

 

N-ethyl piperazine 2y (1.5 mmol) in the presence of 

different amounts of ZrSA, and various solvents such as 

EtOH, H2O, MeOHCH3CN, CH2Cl2, and also under 

solvent-free conditions at a different temperature. Long 

reaction times (>130 min) and not so good yields (< 40 

%) of the product 3ay were obtained in the absence of the 

catalyst in all cases. On the other hand, different amounts of 

the catalyst (0.02, 0.04, 0.06, 0.08, and 0.1) in the presence 

of the solvents or solvent-free condition in various 

temperatures caused to improve the yields and times of the 

reaction. Moreover, the best results in the presence of 

different amounts of catalyst were in refluxing solvents. 

These outcomes show that catalyst, solvent, and 

temperature are necessary for this reaction it is worth 

mentioning that polar solvents were better than non-polar. 

Solvents. Also, the best yields and short reaction times 

were obtained in 0.08 g of the catalyst in water at 

different temperature. Besides, a further increase in catalyst 

amount to 0.1 g, did not improve the product yield and 

reaction time. Among the tested solvents and also 

solvent-free conditions and various amounts of the 

catalyst, the reaction was more facile and proceeded to 

give the highest yield, and short reaction time, using 0.08 g 

of ZrSA in 5 ml of H2O at reflux temperature. All subsequent 

reactions were carried out in these optimized conditions. 

According to these results, and in order to generalize 

this model reaction, we developed the reaction of 1a-d 

with a range of various amines 2w-z under the optimized 

reaction conditions. The condensation of 1a-d and 2w-z 

afforded the products 3 in high yields over relatively 
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short reaction times in refluxing of two forms of water. 

But, in the final outcomes, the magnetized water 

exhibited higher yields in shorter reaction times for all of 

the desired products.  

The ZrSA efficiently catalyzed the reactions, giving 

the desired products in high yields over relatively short 

reaction times. Easy separation of obtained products from 

the catalyst makes this method useful for the synthesis of 

fluoroquinolones. Purity checks with melting points, 

TLC, HPLC (>93%), and the 1H NMR spectroscopic data 

reveal that only one product is formed in all cases and  

no undesirable side‐products are observed. The structures 

of all known products 3 were deduced and compared  

with those of authentic samples from their melting points, 
1H NMR, 13C NMR, and FT-IR spectral data [18–29].  

We also used the model reaction under optimized 

reaction conditions to evaluate the reusability of the  

ZrSA catalyst. After completion of the reaction, the 

catalyst was recovered as described in the experimental 

section. The separated catalyst was washed with hot 

ethanol and subsequently dried at 50 °C under vacuum 

for 1 h before being reused in a similar reaction. The catalyst 

could be used at least five times without significant 

reduction in its activity (97, 96, 94, 94, 93 % yields in first to 

fourth use, respectively) which clearly demonstrates the 

practical reusability of this catalyst. Furthermore, the FT-

IR spectra of the recovered catalysts (Fig.1 (3)–(5)) were 

almost identical to the spectrum of the fresh catalyst 

(Fig.1(2)), indicating that the structure of the catalyst was 

unchanged by the reaction. 

Although we did not investigate the reaction mechanism, 

the ZrSA could act as Brönsted acid and therefore 

promote the necessary reactions. The catalyst would play 

a significant role in increasing the electrophilic character 

of the electrophiles in the reaction. 

 

 CONCLUSIONS 

In conclusion, in this paper we developed the 

synthesis of fluoroquinolone derivatives 3aw, 3ax, 3az, 

3bz, 3cw, 3cx, 3dw, 3dx, 3dy, and 3dz in the presence of 

Zirconia Sulfuric Acid (ZrSA) as a highly effective 

heterogeneous catalyst for the direct amination of 7-halo-

6-fluoroquinolone-3-carboxylic acids 1a-d with several 

amines 2w-z in refluxing ordinary or magnetized water. 

This method provided these products in high yields over 

short reaction time in both forms of water, following a 

facile work‐up process. However, the magnetized water 

showed better results. The catalyst is inexpensive and 

easily obtained, stable and storable, easily recycled and 

reused for several cycles with consistent activity. 
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