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ABSTRACT: Determining the optimal location of wells with the aid of an automated search 

algorithm is a significant and difficult step in the reservoir development process. It is  

a computationally intensive task due to the large number of simulation runs required. Therefore,  

the key issue to such automatic optimization is development of algorithms that can find acceptable 

solutions with a minimum number of function evaluations. In this study, the Differential Evolution (DE) 

algorithm is applied for the determination of optimal well locations. DE is a stochastic optimization 

algorithm that uses a population of solutions which evolve through generations to reach the global 

optimum. To investigate the performance of this algorithm, three example cases are considered 

which vary in dimension and complexity of the reservoir model. For each case, both DE algorithm 

and the widely used Genetic Algorithm (GA) are applied to maximize a Modified Net Present Value (MNPV) 

as the objective function. It is shown that DE outperforms GA in all cases considered,  

though the relative advantage of the DE vary from case to case. These results are very promising 

and demonstrate the applicability of DE for this challenging problem. 
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INTRODUCTION 

Determining the best location for new wells is  

a complex problem that depends on reservoir and fluid 

properties, well and surface equipment specifications,  

and economic criteria. Various approaches have been 

proposed for this problem. One way of solving this 

problem is direct optimization with a numerical simulator 

as the function evaluation tool. The computational  

 

 

 

demand for this problem is substantial, as many function 

evaluations are required and each entails a full reservoir 

simulation. It is therefore essential that the underlying 

optimization algorithm be efficient and robust. There 

have been many previous studies addressing  

the optimization of well locations using different stochastic 

optimization algorithms. A detailed review of these  
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studies is given in [1]. Beckner & Song applied Simulated 

Annealing (SA) algorithm on a well placement problem 

to propose the placement of a sequence of production 

wells [2]. Bittencourt & Horne investigated optimization 

of well placement using a hybridized GA, coupled with 

polytope algorithm and a tabu search method [3]. 

Güyagüler et al. also applied a Hybrid Genetic Algorithm (HGA) 

to find optimal location and rate for vertical wells  

in a water flooding project in Gulf of Mexico [4]. Yeten et al. 

designed a well placement optimization framework 

coupling GA with hill climbing search algorithm and  

an Artificial Neural Network (ANN) proxy [5]. In 2006, 

Bangerth et al. compared the performance of 

Simultaneous Perturbation Stochastic Approximation (SPSA), 

Finite Difference Gradient (FDG), Simulated Annealing (SA), 

Genetic Algorithm (GA) and Nelder-Mead Simplex 

methods during optimization of well placement  

in two synthetic two-dimensional reservoirs [6]. 

Recently, gradient based optimization techniques have 

been used by some researchers in different approaches for 

well placement optimization [7-9]. In a recent work, 

Particle Swarm Optimization (PSO) algorithm was 

applied to several well placement problems involving 

vertical and deviated wells by Onwunalu and Durlofsky. 

They found that PSO algorithm provided better results 

compared to the binary GA [10]. In 2011, Afshari et al. 

applied an Improved Harmony Search (IHS) algorithm  

to solve the problem of well placement optimization in oil 

reservoirs. They compared the performance of this 

algorithm to that of Classical Harmony Search, Particle 

Swarm Optimization, Simulated Annealing and Genetic 

Algorithm through several case studies and demonstrated 

that the IHS algorithm provided comparable or better 

results than the other methods [1]. In this work, we apply 

the Differential Evolution (DE) algorithm for the 

optimization of well locations. This algorithm has been 

used previously in many other application areas [11-17], 

but it does not appear to have been applied for the 

optimization of well placement problem. We demonstrate 

that the DE method outperforms an existing Genetic 

Algorithm for this application. This is potentially a very 

useful finding, as GAs are widely used for this and other 

reservoir-management related applications. The rest of 

the paper is organized as follows: We first describe, in 

next section, the components that were used for solution 

of the well placement problem: 1) DE algorithm and  
 

2) Objective function. Then, in section "Results & 

Discussion", well placement optimization problems  

of three example are solved using DE and GA;  

the comparison of the results demonstrate  

the superior performance of DE for the cases considered. 

Finally, we conclude with a brief summary in 

"Conclusion" section. 

 

THEORETICAL  SECTION 

Differential Evolution Algorithm 

Differential Evolution (DE) was first suggested by 

Storn & Price in 1995 as a search technique for solving 

optimization problems [18]. DE has proven to be  

a promising candidate for optimizing real valued  

multi-modal objective functions. Besides its good convergence 

properties, DE is very simple to understand and  

to implement. DE is also particularly easy to work with, 

having only a few control variables which remain fixed 

throughout the entire optimization procedure. It uses  

the same operators like mutation, crossover and selection 

as that of GA but manipulates them in a manner different 

to that of GA. A brief description of DE algorithm is given 

here. It starts with a population of NP candidate 

solutions: 

 G G G G
i 1,i 2,i D,iX x ,x ,..., x       i 1,2,..., NP                       (1) 

Where, the index i denotes the i-th individual of  

the population, D is the number of optimization parameters, 

and G denotes the generation to which the population 

belongs. The three main operators of DE are mutation, 

crossover and selection [19]. 

Mutation: The mutation operation of DE applies  

the vector differentials between the existing population 

members for determining both the degree and direction  

of perturbation applied to the individual subject of  

the mutation operation. The i-th perturbed individual, 

G 1
iV  , is generated as follows: 

 G 1 G G G
r1 r2 r3iV X F X X ,                                            (2) 

   r1, r2, r3 1,2,..., NP  

Where G
r1X , G

r2X  and G
r3X  are randomly selected three 

individuals in the current population set of NP individuals 

such that r1 r2 r3 i   . F is a DE control parameter 

which controls the amplification of differential variations 

and lies in the range of [0, 2]. 



Iran. J. Chem. Chem. Eng. Well Placement Optimization Using Differential Evolution Algorithm Vol. 34, No. 2, 2015 

 

111 

Crossover 

The perturbed individual,  G 1 G 1 G 1 G 1
i 1,i 2,i D,iV v , v ,..., v    , 

and the current population member, 

 G G G G
i 1,i 2,i D,iX x , x ,..., x , are then subject to the crossover 

operation, that finally generates the population of 

candidates ,or trial vectors,  G 1 G 1 G 1 G 1
i 1,i 2,i D,iU u , u ,..., u    ,  

as follows: 

G 1
j,i j

G 1
j,i

G
j,i

v         if   (rand CR) j k
u

x                 otherwise




  






                        (3) 

j 1, 2,...,D  

Where  k 1,2,...,D  is a random number 

parameter’s index, chosen once for each i, and randj  

is a random number between 0 and 1. CR is the crossover 

rate that controls the probability of replacing the current 

value of X with a new one and is in the range of [0, 1]. 

 

Selection 

The selection scheme of DE also differs from that of 

GA. To decide whether or not it should become  

a member of generation, each trial vector, G 1
iU  ,  

is compared to its corresponding individual in the current 

generation in terms of objective function. The population 

for the next generation is selected according  

to the following formula: 

   G 1 G 1 G
i i iG 1

i
G
i

U             if     f U f X
X

X                otherwise

 









                    (4) 

Thus, each individual of the temporary (trial) 

population is compared with its counterpart in the current 

population. The one with the higher objective function 

value (for a maximization problem) will be included  

in the next generation. 

 

Objective Function 

In the well placement problems, the objective function  

is usually the project’s Net Present Value (NPV) [1].  

In all problems considered in this study, we used  

a modified NPV as the objective function.  

To accommodate the constraint of minimum distance 

between the wells, the following expression has been 

used as a modification of NPV [1]:  

i, j

T

0
t 1

0                      if      D 200     

MNPV Ct C      Otherwise
t(1 r)




 




              (5) 

Di,j is the distance between well i and well j 
 

(i,j {1, 2, total number of wells} and ij}. In this 

manner, each well is constrained to have a minimum 

distance of 200 ft from the adjacent wells. t is the time 

step in years, T is the total production time in years, Ct is 

cash flow after time t in $, r is annual or periodic discount 

rate in fraction, and
0

C is initial investment. The annual 

discount rate is set to 0.1 (10%). Ct and C0 can be computed 

as follows: 

t t tC R E                                                                    (6) 

0 well well capexC N C C                                                (7) 

Where Rt and Et represent the revenue ($) and 

operating expenses ($) in time t, respectively. Nwell
  

is the number of wells, Cwellis the drilling cost of each well 

in $/well and Ccapex is the capital expenditure. Rt and Et 

depend on the fluid production volumes at time t: 

t t
t oil oilR P $                                                                  (8) 

water water

t t t t
t water waterP I

E P Cost I Cost                           (9) 

Where t
oilP  and t

waterP  are total oil and water 

production at time t in STB, t
waterI  is total water injection 

at time t in STB, t
oil$  is oil price at time t in $/STB, 

water

t
P

Cost  is produced water disposal cost at time t in 

$/STB, and 
water

t
I

Cost  is water injection cost at time t  

in $/STB. Table 1 shows the values of objective function 

parameters that will be used to compute the MNPV. 

 

RESULTS  AND  DISCUSSION 

DE algorithm has been applied to different case 

studies. These cases vary in terms of dimensions, number 

of well considered and petrophysical properties. 

Therefore, the size of the search space and consequently, 

the amount of computation required for function 

evaluation will be different for each case. All examples 

use a modified net present value as the objective function. 

In each case, we will compare the performance of  

the DE algorithm to that of GA.  
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Table 1: The value of parameters used in computing MNPV. 

Objective Function (MNPV) Parameters Parameter Value 

Oil Price ( t
oil$ ) 100 $/STB 

Produced Water Disposal Cost (
water

t
P

Cost ) 5 $/STB 

Water Injection Cost (
water

t
I

Cost ) 10 $/STB 

Capital Expenditure (
capexC ) 2×107 $ 

Well Cost (Cwell) 4×106 $ 

 

Table 2: Tuned parameters of the algorithms used in solving well placement problem of case 1. 

GA NP = 50     ,    CR = 0.90  

DE NP = 10      ,      F = 1      ,      CR = 0.50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Permeability distribution for reservoir model of Case 1. 

 

DE and GA have some internal parameters that must 

be tuned for each problem separately in order to improve 

the performance them. Therefore, there was an attempt  

to tune these parameters for all of the cases studied here. 

The procedure of tuning was same as the one used by [1]. 

Since both GA and DE are stochastic algorithms and 

random in nature it is not sufficient to compare their 

performances based on a single run, so we need multiple 

number of runs. Thus, for each example case,  

10 simulation runs were carried out and the average  

of MNPVs achieved by each optimization algorithm  

has been calculated over these multiple runs. These average 

values then were used as the basis of comparison.  

 

Case 1 

In this example, we determined the optimum location of 

four injection wells (I1, I2, I3, I4), in a simple 2-D 

synthetic reservoir model which has a single production  
 

well (P1) in the center (in block (13 , 13)). The reservoir 

contains 27×27 grid blocks, with each block of dimensions 

100×100×50 ft. Porosity is taken to be constant and equal 

to 0.25 while permeability distribution is heterogeneous  

but very simple which are displayed in Fig. 1. The system, 

initially, contains oil and connate water, and the boundaries 

are considered to be no flow. The oil viscosity and 

formation volume factor are 1.24 cp and 1.05 rb/STB, 

respectively. Also, water viscosity and formation volume 

factor are considered to be 0.5 cp and 1 rb/STB, 

respectively. Rock compressibility is 3.26×10-6 psi-1 and 

solution gas oil ratio is 0.1 MSCF/STB. The system is 

initially at the pressure of 4500 psi. Initial water saturation 

and residual oil saturation are 0.25 and 0.30 respectively. 

The production well operates under a BHP constraint of 

500 psi and injection rate for each injector is 250 STBD. 

Total production time is 3650 days. Regarding the simple 

geometry and permeability distribution of the model,  

one can determine the optimum locations of four injectors 

trivially. The optimum locations are these blocks: (0 , 13), 

(27 , 13), (13 , 0) and (13 , 27); and the corresponding 

MNPV for this well configuration is 2.6098×108 (global 

optimum). An investigation similar to the one used by [1] 

has been conducted to tune the internal parameters of  

the optimization algorithms and the results have been 

summarized in Table 2. 

Then, we run the optimization program up to 10 times 

using DE and GA and compare the performance of them  

in solving the well placement of case 1 based on the  

average MNPVs. We run program until 1000 function 

evaluations for each case. Fig. 2 illustrates the progress of 

optimization process for DE solutions and GA solutions. 

The dashed line corresponds to the global optimum.
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Fig. 2: The progress of optimization process for Case 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3: Optimum location of injection wells achieved in the  

5th run by (a) DE, and (b) GA for Case1. 

It is evident that DE was able to found the global optimum 

in some runs, while GA was unable to find this solution 

within 1000 function evaluations. The corresponding 

average objective function of GA solutions is 2.1954×108 

which is 14.3% lower than that of DE (2.5616×108). Fig. 3 

shows the optimum solution found by these algorithms in 

the 5th run. 

 

Case 2 

In this case, we maximize MNPV by optimizing  

the location of one production well (P1) in a 2-D 

synthetic reservoir model. The reservoir has already four 

injection wells (I1, I2, I3, I4) which placed in the four 

corner of the reservoir (in grid blocks: (0 , 0), (220 , 0),  

(0 , 60), (220 , 60)). The reservoir grid contains 220×60 grid 

blocks, each of a size of 20×50×50 ft. Fluid properties are 

the same as the case 1. Porosity and permeability 

distribution of the model are shown in Fig. 4 and Fig. 5, 

respectively. The injection rate for each injector  

is considered to be 250 STBD and minimum BHP 

constraint of production well is 500 psi. Total production 

time is 5475 days. A procedure similar to that of  

case 1 has been used to tune the internal parameters  

of the algorithms and the results have been summarized 

in Table 3. 

After tuning, the program is run for this case until  

250 function evaluations; DE and SA are used as  

the optimization algorithms and their performances  

are compared to each other based on the average MNPVs 

achieved after 10 runs for each algorithm. Fig. 6 shows 

the optimal MNPVs for each algorithm (DE and GA 

solutions) versus the number of function evaluations.. 

The DE algorithm gives an average MNPV of 

3.7412×108 which compared to 3.7225×108 of GA, shows 

0.6% improvement. Fig. 7 shows the optimum location of 

the production well found by DE and GA in the 5th run. 

Comparing these locations to the porosity and 

permeability maps of the reservoir (Figs. 4 and 5), it is 

obvious that the well is not located  

in low permeability regions in both cases, which  

is acceptable by a reservoir engineer. 

 

Case 3  

This example entails the determination of the optimal 
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Table 3: Tuned parameters of the algorithms used in solving 

well placement problem of case 2. 

GA NP = 25     ,    CR = 0.80  

DE NP = 5      ,      F = 1      ,      CR = 0.50 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Porosity distribution for reservoir models of Cases 2 & 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Permeability distribution for reservoir models of Cases 2 & 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6: The progress of optimization process for Case 2. 

Table 4: Tuned parameters of the algorithms used in solving 

well placement problem of case 3. 

GA NP = 100     ,    CR = 0.80  

DE NP = 10      ,      F = 1      ,      CR = 0.50 

 

location of four injection wells (I1, I2, I3, I4)  

in a reservoir which has already four fixed production 

wells (P1, P2, P3, P4) within itself. The reservoir model 

and its rock and fluid properties are the same as the case 2. 

Porosity and permeability distribution of the model are 

the same as Figs. 4 and 5, respectively. The reservoir has 

already four production wells in grid blocks: (68, 9),  

(the reservoir with minimum BHP constraint of 500 psi. 

Injection rate for each injector is considered to be  

250 STBD and the total production time is 3650 days.  

A procedure similar to those of cases 1&2 has been used 

to tune the internal parameters of the algorithms and  

the results have been summarized in Table 4. 

Then, we run the program for this problem using DE and 

GA as the optimization algorithms and compare their 

performances over 10 runs for each algorithm. We run  

the program for each case until 1000 function evaluations. Fig. 8 

shows the optimization process and optimal MNVPs 

achieved in each case. The average MNPVs for DE and GA 

solutions are 2.5902×108 and 2.5575×108, respectively. 

Thus, DE solution is about 1.3% higher than that of GA. 

Optimum well locations determined in the 5th run are shown 

in Fig. 9. In both of them, the well locations are acceptable 

from the standpoint of reservoir engineering: the injection 

wells are located in proper distances from each other and, 

also, from production wells; and their locations are in the 

regions of reservoir which have relatively higher 

permeability than the other regions. 

 

CONCLUSIONS 

In this paper, we applied the DE algorithm for the 

problem of well placement optimization in an oil 

reservoir. The performance of this algorithm has been 

compared to GA, which is the most common 

optimization algorithm in the context of well placement 

optimization, through three case studies with the 

maximization of MNPV as the objective function. In all 

of these cases, we demonstrated that the DE algorithm 

provided better performance than the GA. Thus DE 

represents a viable alternative to GA, with a very simple 

structure than GA. 

1000             2000            3000            4000 

Porosity (fraction) 

0.0 

 
500 

 
1000 

 
1500 

 
2000 

 
2500 

 
3000 

0.00064             0.11219              0.22373               0.33527              0.44682 

0.0            1000.0         2000.0          3000.0         4000.0 

Porosity (fraction) 

0.0 

 
500 

 
1000 

 
1500 

 
2000 

 
2500 

 
3000 

0.0          0.0            0.1           1.0         10.0        100.0       1000.0     10000.0 

0                 50              100              150              200             250 

Number of function evaluation 

3.76 

 

3.74 

 

3.72 

 

3.7 

 

3.68 

 

3.66 

 

3.64 

 
3.62 

 

3.6 

M
N

P
V

 (
$

) 

 108 



Iran. J. Chem. Chem. Eng. Well Placement Optimization Using Differential Evolution Algorithm Vol. 34, No. 2, 2015 

 

115 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: Optimum location of production well achieved in the 5th run by (a) DE, and (b) GA for Case 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8: The progress of optimization process for Case 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9: Optimum location of injection wells achieved in the 5th run by (a) DE, and (b) GA for Case 3. 
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