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ABSTRACT: For large and complex reacting systems, computational efficiency becomes a critical 

issue in process simulation, optimization and model-based control. Mechanism simplification is 

often a necessity to improve computational speed. We present a novel approach to simplification of 

reaction networks that formulates the model reduction problem as an optimization problem and 

solves it using genetic algorithm (GA).The aim of simplification kinetics modeling is to derive the 

simplest reaction system, which retains the essential features of the full system. Numerical results 

for H2/O2 combustion reaction mechanism illustrate the potential and proficiency of this approach. 
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INTRODUCTION 

Complex chemical reaction systems arise in a variety 

of processes, such as combustion, chemical-vapor 

deposition, fluid catalytic cracking and biotechnological 

process [1]. The incorporation of detailed chemistry in 

the modeling of such a process is critical for design, 

optimization and control. The kinetics of a detailed 

chemically reacting system can potentially be very 

complex [2]. Although the chemists may be interested in 

only a few species, the reaction model almost always 

involves a much larger number of species, some of which 

are radicals. These are very reactive species, which can 

be important intermediaries in the reaction scheme. A 

large number of elementary reactions are fast and some 

are slow. The aim of simplified kinetics modeling is to 

derive the simplest reaction system, which retains the 

essential features of the full system. 

 

 

 

A variety of model reduction techniques have  

been developed to handle the problem of large  

and complex mechanisms. The conventional technique  

is to systematically apply the so-called quasi-steady  

state approximation to the appropriate radicals, the 

partial-equilibrium approximation to the fast reversible 

reactions and to ignore the very slow reactions.  

A comprehensive knowledge of chemical kinetics is 

usually needed, and the results obtained are expected  

to be valid only in some limited initial and operating 

condition for a limited interval of time. Usually  

the obtained reductions are not elementary reactions  

and actually represent groups of reactions lumped 

together. This makes the reduced model more accurate, 

but the physical meaning of the elementary reaction  

may be lost [3]. 
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Sensitivity analysis has often been used for the 

purpose of obtaining information to develop a reduced-

order and simpler mechanism. Defining the rate constants 

of the chemical reactions as parameters under study, 

sensitivity analysis determines the change in the species 

concentration for small perturbations of the rate constants. 

If a reaction is slow and unimportant, it can be identified 

in this way. However, sensitivity analysis may also single 

out fast reactions, which are important and therefore, 

should not be deleted [4]. 

Lam et al., [5] have proposed the computational 

singular perturbation (CSP) method for automatically 

determining appropriate simplified kinetic models. The 

CSP method identifies the fast and slow modes as the 

system advances in time. 

The reduced-order model at any given time is 

solvable by explicit time-stepping methods because the 

fast modes have been identified and approximated by 

algebraic constraints, leaving only the slower mode in the 

differential system [6]. 

Further, the slow manifold approach, an analysis of 

the eigenvalues and eigenvectors of local linearized 

system is used to identify the fast and slow modes, hence 

obtaining a reduced system [7]. Methods based on local 

linear analysis can be helpful in pointing out a potential 

problem, but it still requires a chemist to solve it. 

Chemical mechanisms are sufficiently nonlinear that a 

global approach may be warranted. 

In the other approach or scheme an optimization-

based method for reduction of the number of species and 

reactions in chemical kinetics models is described [8-10]. 

In this work we use genetic algorithm (GA) for kinetic 

model reduction. 

 

KINETIC  MODEL  REDUCTION  

VIA  OPTIMIZATION  APPROACH 

In this approach by posing the reaction mechanism 

simplification problem as an optimization problem, an 

objective function is formulated which should be 

minimized subject to a series of constraints. The structure 

of the optimization problem is that of a mixed-integer 

nonlinear programming problem (MINLP) which has 

both continuous and discrete variables. 

To solve such optimization problems, there are 

several issues to be considered. It is necessary to have 

sets of equations, coefficients, and variables that describe  

the physicochemical behavior of the system. 

An additional requirement in posing a reaction 

mechanism reduction problem as an optimization problem 

is a quantitative measurement of model error. 

The error measurement involves comparing what is 

actually occurring in a real reactor to what is predicted 

using an equation-based kinetic model. A typical error 

measurement might involve the sum of squared errors 

between the concentration or reaction rate profiles of the 

“full model” and similar profile for the “reduced model”. 

The final requirement is an objective function to be 

minimized. Although several possibilities exist, the 

simplest is a linear equation involving some combination 

of the model error variables. 

By posing the reaction reduction problem as an 

optimization problem, it is very important to find 

effective method to solve this problem.  It would appear 

that solving the discrete optimization problem directly by 

mathematical methods could be very costly. There is 

almost not a mature method for nonlinear integer 

programming problems without convex or polynomial 

properties [11,12]. Petzold used adaptive nonlinear 

optimization method for solving reaction reduction 

problem [7]. In this method, the MINLP is firstly 

converted to a continuous optimization problem by 

adding a nonlinear constraint. Next forth, the problem is 

solved via a sequential quadratic programming (SQP) 

method. Since the classic and continuous optimization 

solvers can find only local optimal solutions for the 

nonlinear programming problems the result is not 

necessarily global and absolute. 

Androulakis [13] and Sirdeshpande [10] used branch 

and bound (B&B) algorithm to solve this problem. The 

relaxed INLP at each node of B&B tree was solved using 

a sequential quadratic programming (SQP) method. Since 

the SQP method can only guarantee a local minimum, the 

results of the B&B strategy do not necessarily yield the 

smallest set of reactions. 

In this work we use genetic algorithm (GA) for 

kinetic model reduction. The MINLP approaches worked 

well for small reaction system, whereas GA method was 

applicable to large reaction networks as well. GA has 

been used to solve difficult problems with objective 

functions that do not process “nice” properties such as 

continuity, differentiability, and convexity. 
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GENETIC  ALGORITHM 

GA represents a class of search and optimization 

procedures that are patterned after biological process of 

natural selection. GA solves a wide range of optimization 

problems, including combinatorial, discontinuous, discrete 

or non-differentiable, multi-modal, and even stochastic 

problems.  GA searches the solution of a function through 

the use of simulated evolution, i.e. the survival of the 

fittest strategy. In general, the fittest individuals of any 

population tend to reproduce and survive to the next 

generation, thus improving successive generations. 

However, inferior individuals have the chance of surviving 

and also reproducing. 

The use of a genetic algorithm requires the 

determination of six fundamental issues: chromosome 

representation, selection function, the genetic operators, 

and the creation of the initial population, termination 

criteria, and the evaluation function. 

GAs use stochastic process to produce an initial 

population of models which is called parents. Then, a 

new population (offspring) is produced through iteration. 

Each iteration represents a new set of strings created 

according to a number of specified and predetermined 

performance index. The (genetic) algorithm searches for 

new generations with gradually improved behavior. This 

process is repeated a number of times until the fittest 

individuals evolve. 

When GA is applied to optimization problems, each 

optimization variable is typically encoded as a string of 

alphabets and these strings are (usually) appended 

together to form a chromosome. An alphabet could 

consist of binary digits (0 and 1), floating point number 

(real GA), integers, symbols (i.e. A, B, C, D), matrices, 

etc. In Holland’s original design, [14] the alphabet was 

limited to binary digits (binary GA). Michalewiz showed 

that the real-valued GA is an order of magnitude more 

efficient in terms of CPU time from binary GA for 

problems with continuous variable [15]. 

Fitness function provides the mechanism for 

evaluating each string. Having defined the initial 

population and the fitness function, the parameters are 

evaluated and assigned with a fitness value which shows 

how good is the selected solutions compared with others 

in the population. Probability of the given model being 

selected for the next population depends on the fitness 

value. The higher fitness value means higher chance of 

survival and generates more copies. In this way, GAs 

search for new generations with gradually improved 

behavior using three fundamental operators; reproduction, 

crossover and mutation. 

Reproduction, the strings with larger fitness values, 

produce large number of their copies in the new 

generation, in this way, fitter solutions have a higher 

chance to survive while weaker ones perish. 

There are many different ways for the production in 

the literature. One of the simplest procedures is the 

roulette wheel selection scheme. Other methods for 

selection are proportionate selection and tournament 

selection. 

By crossover the strings can exchange information 

probabilistically with each other. For this aim, each pair 

is selected progressively and a random number between  

0 and 1 is generated. This number is compared to a 

crossover probability, pc. If the random number is greater 

than pc, then the two parents pass to next generation 

unchanged. If not, then parents are crossed over. There 

are three types of crossover: single point, multi-point  

and uniform crossover. By mutation, the string can 

change their structure at randomly selected bit positions. 

The bits of a string are independently mutated.  

Mutation may generate the string, which is not produced 

by reproduction and crossover. So, this process is 

complementary to other operators. In this process, all bit 

positions are tested for mutation by generating a random 

number and comparing it with the mutation probability, 

pm. If it is less than pm the bit is changed. Otherwise it is 

unchanged. 

Population size (N), crossover (pc) and mutation 

probability (pm) are the parameters of GA. The 

parameters depend on the nature of the objective 

function.   

 

Reactions Model Reduction  

Problem definition 

Given Ns chemical species with mole fractions yi, 

(i=1,…,Ns) and NR reaction where rj, (j=1,…,NR) denotes 

the reaction rate of the jth reaction.  

The mass and energy balances for a constant-volume 

batch reactor are given by 

)N,...,1i(,rvy S

N

1j

iiji

R

==�
=

�                                      (1) 
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Where vij denotes the stoichiometric coefficient of 

species i in the reaction j (in moles per unit time per unit 

volume) and ∆Hj denote the heat of reaction j. T denotes 

the temperature, Cp is the heat capacity and ρ is the 

density of reacting mixture. 

The model of Eqs. (1) and (2) can be written in the 

following general form  

0x)0(x,)x(RSx =×=�                                             (3) 

where x  is the vector of state variable 
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S is a (n×NR) generalized stoichiometric matrix 

and )x(R  is an NR- dimensional reaction rate vector. 
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The reduced system is given by: 

)z(RDSz ××=�                                                              (4) 

Where RR NND ×ℜ∈ is a diagonal matrix, whose 

diagonal elements (di) are either 1 or 0 (depending on 

whether or not reaction j is selected for the reduced 

mechanism). The z vector denotes the reduced state of 

the dynamical system. Now the problem of finding the 

reduced mechanism can be written as an integer 

constrained optimization. We minimize the error while 

postulating the number of reactions. 

2/1
1N
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Subject to: 

0x)0(x,)x(RSx =×=�  

)z(RDSz ××=�  

1or0d,kd i

N

1i

i

R

==�
=

 

Where the minimum is over d1,…,dn, each di can take 

the value 0 or 1, and RNk ��  is number of reactions for 

reduced mechanism is chosen by the user. Eq. (5) has 

been solved by Petzold [7] via converting this problem  

to continuous constrained problem by using nonlinear 

constraint g(d1,…,dn) = 0 that forces the di to take integer 

values: 

( )�
=

β
=−=

n

1i

2
ii 0ddg                                                     (6) 

where β≥2 is a parameter which controls the shape of the 

normalized, symmetrical Beta-function integrand. 

Instead of imposing a bound on the number of 

reaction while minimizing the approximation error, one 

could postulate the inverse problem, whereby minimize 

the number of reaction while postulating the error: 

�
=

=
RN
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idemin                                                                  (7) 
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0x)0(x,)x(RSx =×=�  

bt0,x)0(z,)z(RDSz 0 ≤=××= ��  

The above-mentioned formulations using branch & 

bound algorithms have been used by Androulakis for 

kinetic model reduction [13]. Since the above approaches 

use SQP method, it can only guarantee a local minimum, 

hence, the results of this strategy do not necessarily yield 

the smallest set of reactions. Because of the non-

convexity of problems (5) and (7) we use GA to solve 

optimization   problem.   For   solving   the   optimization  
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problem, it is necessary to convert constraint optimization 

problem to a non-constraint optimization problem by 

adding penalty function as such. The formulation of 

kinetic model reduction problem for GA is encoded as: 

��

�
�
�

��

�
�
�

α+−= �
=ℜ∈

0),d,k(minePImax
R

RN

N

1i

i
d

                              (8) 

0x)0(x,)x(RSx =×=�  

bt0,x)0(z,)z(RDSz 0 ≤=××= ��  

k is the number of reaction for reduced mechanism, 

chosen by the user, and α denotes the penalty coefficient. 

It should be noted that for the traditional and engineering 

optimization applications it is common to formulate  

the case as a minimization problem, but due to the 

evolutionary philosophy of GA algorithms, the  

problem must be formulated as a maximization one.  

It is the reason for using the opposite sign of models  

error in Eq. (8).  

 

SOLUTION  METHOD 

Because of the non-convexity of problem (7) for most 

physical systems, we have chosen genetic algorithms 

(GA) as the solution method. Because variables (di) in 

this problem (Eq. (8)) are binary, we use binary GA. 

Each di encoded as a bit in GA chromosomes. For 

example for a network with NR reactions, we have such 

GA chromosome. 
 

 

d1 … di … RNd  

1 1 0 1 0 
 

Genetic operator provides the basic search mechanism 

of the GA. The operators are used to create new solutions 

based on existing solution in the population. There are 

two basic types of operators: crossover and mutation. In 

one–point crossover, patent chromosomes have a finite 

probability Pc of breaking at a random point, exchanging 

genetic information, and thus mating to produce children 

for next generation. Flowing crossover, each of the 

chromosome bits has probability pm of switching values. 

In this work for simulation of reaction network and GA, 

MATLAB code is used. The code consists of two main 

parts: the optimizer (GA code) and differential - algebra 

equation solver. The optimizer GA code chooses the 

parameters and the DAE solver computes the objective 

value. 

CASE  STUDIES 

H2 /O2 Combustion at low pressure 

The full mechanism involving 20 reaction and 8 

species is given in table 1. For the calculation of the 

equilibrium constants and all necessary thermo-physicals 

properties the from following equations are used. It is 

assumed that reacting mixture is ideal gas. 

( )
RT

G
KLn ii

eq

∆
−=  

�
=

==∆
SN

1i

Riiji N,,1j,GvG �  

Siii N,,1i,TSHG �=−=  

To calculate Hi, Si, Cpi we have used NASA 

thermodynamic data [16]. The properties are given 

through regression formula as below: 

4
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The profile to be replicated is one that corresponds to 

the following initial condition: H2 mole fraction = 0.17, 

O2 mole fraction=0.88, T0 = 1000 K. The error measure 

was defined, as the L2 norm of the profiles of H2, O2, 

H2O, temperature and it is evaluated over a time period of 

0.16 ms. 

The results of simulation by k = 6 and α = 0.01 in  

Eq. (8) show that the reduced mechanism contain 6 

reactions, which are {1, 2, 3, 4, 5, 7} and achieves an 

error of 3.3e-3. Profiles comparing the detailed and 

reduced mechanism are shown in Fig. 1. 

The reduced mechanism for k= 9, α=0.01 in Eq. (8) 

contain 9 reactions, which are {1, 2, 3, 4, 5, 6, 7, 9, 16} 

and an error of 6.2E-4. Profiles comparing the detailed 

and reduced mechanism are shown in Fig. 2. It is also 

noted that the number of maximum generations was set to 

50 and the initial population size has been selected as 80 

for both runs. In addition the probability percent of 

crossover binary operation and mutation rate was set as 

65% and 10% respectively. 

Although the problem was cast in the form of Eq. (8) 

with a single  objective  in more  general terms, it must be 
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Table1: The full mechanism H2/O2 Combustion at low pressure. 

 

 

N0. Reaction 

)
RT

E
exp(*T*Ak b −

= 

A b E 

1 H2+O2=2OH 1.70E+13 0.0 47780.0 

2 OH+H2=H2O+H 1.17E+09 1.3 3626.0 

3 O+OH=O2+H 4.00E+14 -0.5 0.0 

4 O+H2=H2O+H 5.06E+04 2.7 6290.0 

5 

H+O2+M=HO2+M 

H2O              Enhenced by   1.86E+01 

H2              Enhenced by   2.86E+00 

3.61E+17 -0.7 0.0 

6 OH+HO2= H2O+ O2 7.50E+12 0.0 0.0 

7 H+HO2=2OH 1.40E+14 0.0 1073.0 

8 O+HO2=O2+OH 1.40E+13 0.0 1703.0 

9 2OH=O+H2O 6.00E+08 1.3 0.0 

10 

H+H+M=H2+M 

H2O              Enhenced by   0.00E+00 

H2                 Enhenced by   0.00E+00 

1.00E+18 -1.0 0.0 

11 H+H+H2=H2+H2 9.20E+16 -0.6 0.0 

12 H+H+H2O=H2+H2O 6.00E+19 -1.2 0.0 

13 
H+OH+M=H2O+M 

H2O              Enhenced by   5.00E+00 
1.60E+22 -2.0 0.0 

14 
H+O+M=OH+M 

H2O              Enhenced by   5.00E+00 
6.20E+16 -0.6 0.0 

15 O+O+M=O2+M 1.89E+13 0.0 -1788.0 

16 H+HO2= H2+O2 1.25E+13 0.0 0.0 

17 HO2+HO2= H2O2+O2 2.00E+12 0.0 0.0 

18 H2O2+M=OH+OH+M 1.30E+17 0.0 45500.0 

19 H2O2+H=HO2+H2 1.60E+12 0.0 3800.0 

20 H2O2+OH=H2O+HO2 1.00E+13 0.0 1800.0 

NOTE:  A units mole-sec-K,    E units cal/mole 

 

posed as multilevel problem in which one wishes to 

identify the minimum number of reactions that produce 

the least approximation error. One way to approach this 

question is to solve the original problem for different 

values of the k (number of reactions in reduced  

model). This way, we contract the set of solutions  

that shows the evolution of the approximation error as a 

function of the size of reduced network shown in Fig. 3. 

According of Fig. 3, we find that with up to six reactions 

one achieves an almost linear improvement in the error 

as the size of the reduced network is increased thus a set 

of six reactions {1, 2, 3, 4, 5 and 7} is a good description 

of the detailed mechanism. Any further reduction  

below this critical set will substantially deteriorate  

the quality of the reduced mechanism. This is clearly  

seen by the fact that the slope of the error changes 

drastically as we further try to reduce the size of the 

network. In Fig. 4 the variation of fitness functions with 

respect to progression of generations is shown for six-

reaction. As it is clear, the optimization problem has 

converged after 40 generation, with a smooth and non-

premature evolution. 
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Fig. 1: Profiles comparing the detailed and reduced mechanism contain 6 reactions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Profiles comparing the detailed and reduced mechanism contain 9 reactions. 
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Fig. 3: The approximation error as a function of the size of 

reduced network. 

 

 

SUMMARY 

In this work we used Genetic Algorithm (GA) for 

kinetic model reduction. The MINLP approaches worked 

well for small reaction system, whereas GA method was 

applicable to large reaction networks as well. We present 

a novel approach to simplification of reaction networks 

that formulates the model reduction problem as an 

optimization problem and solves it using genetic 

algorithm (GA). 

The aim of simplification kinetics modeling is to 

derive the simplest reaction system, which retains the 

essential features of the full system. Numerical results for 

H2/O2 combustion reaction mechanism illustrate the 

potential of this approach. In the future, it is intended to 

exemplify and justify the more complex reaction systems. 

 

Nomenclatures 

aij                                                     Regression coefficient 

b                                                          End of reaction time 

Cp                                                            Thermal capacity 

D                                                               Diagonal matrix 

di                                                                 Binary number 

e                                                            Minimization error 

Gj                                       Gibbs free energy of formation 

g(.)                                              Nonlinear scalar function 

∆Hj                                                    Enthalpy of Reaction 

i                                                                                  Index 

j                                                                                  Index 

i
eqK                                                    Equilibrium constant 

N                                                                 Population size 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: The variation of objective (fitness) function versus the 

progressive generations for the six-reaction reduced model 

(k=6, αααα=0.01). 

 

NR                                                      Number of Reactions 

NS                                           Number of chemical species 

pc                                                        Crossover parameter 

pm                                                Mutation rate probability 

PI                               Performance Index, Fitness function 

R                                                      Universal gas constant 

)x(R                                                    Reaction rate vector 

S                                                                                Matrix 

Sj                                                        Entropy of formation 

T                                                                      Temperature 

vij                                                Stoichiometric coefficient 

wi                                                                   Weight factor 

x                                                                       State vector 

yi                                                                    Mole fraction 

z                                                         Reduced state vector 

α                                                                          Parameter 

β                                                                          Parameter 

δ                                                          Tolerance parameter 

ρ                                                            Density of mixture 
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