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ABSTRACT: To perform any economic management of a petroleum reservoir in real time,  

a predictable and/or updateable model of reservoir along with uncertainty estimation ability  

is required. One relatively recent method is a sequential Monte Carlo implementation of the Kalman 

filter: the Ensemble Kalman Filter (EnKF). The EnKF not only estimate uncertain parameters  

but also provide a recursive estimate of system states such as pressures and saturations. Due to 

high computational cost, however, the EnKF is limited to small size ensemble set in practice.  

On the other hand small ensemble size yield spurious correlation within covariance of state. A remediation 

to this problem is to employ covariance localization to remove long-range spurious correlations.  

In this study, five distance base localization functions have been implemented and analysis on 

two different cases to obtain a better history matching with EnKF. The results indicate that quartic 

correlation function produce better results than others especially to the popular fifth-order 

correlation function meanwhile maintain more total variance at the end of the assimilation. 
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INTRODUCTION 

To establish any optimal plan for petroleum reservoir 

development in its early stages, a stochastic reservoir 

model with predictable ability is required. The process  

to obtain such a predictable model is automated history 

matching or data assimilation. Traditional history 

matching techniques utilize production observation  

in a batch-integrated process to adjust the reservoir model 

parameters while Data Assimilation (DA) employs  

the same data sequentially. In addition to this, DA estimates 

the dynamic data or states of reservoir. During history  

 

 

 

matching process, reservoir dynamic data (such as 

production and 4D seismic) are integrated within 

geological model to characterize the unknown real 

reservoir. These unknowns may include both static 

parameters (permeability and porosity map, initial values 

and boundaries loci to name few) and system states such 

as pressures, saturations. Assimilation techniques 

minimize an objective function that is a combination of 

data mismatch (discrepancies between the model 

estimates and the observed/measured data) and model  
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mismatch (difference between the updated/analyzed 

model parameters and the prior), sequentially. In this 

method, at any assimilation cycle, model parameters  

are updated by the use of new observations.  

DA, in a Bayesian framework, is an approach  

to sample posteriori Probability Density Function (PDF)  

of model parameters through employing production data. 

A relatively recent method which belongs to this statistical-

viewed family and initially was utilized for near well 

monitoring is Ensemble Kalman Filter (EnKF) [1, 2].  

Gu & Oliver were first that applied the EnKF for history 

matching process [3]. Due to advantages of EnKF, it soon 

became a major research topic in automatic history 

matching [4]. This method can be readily implemented to 

any reservoir simulator without requirement for sensitivity 

calculation. In EnKF, just the cross-covariance of predicted 

data with model parameters (as a measure of estimation 

errors) and covariance of predicted data itself (as measure 

of model improvements offered by measurement)  

are employed to carry out the history matching process. 

Despite EnKF implementation to perform large scale 

reservoir history matching [5], there remain some 

unsolved problems. Most of the problems come from  

the internal linearity - Gaussianity assumptions from original 

Kalman filter. These are due to fact that most real 

dynamic systems follow nonlinear, non- Gaussian pattern. 

The former problem, itself, causes underestimation of 

variance by applying small ensemble size during data 

assimilation [6]. Often, these problems lead to filter 

divergence; in some cases ensemble members collapse  

to single estimate or the results tend to deviate from the true 

one as more data assimilated.  

Since EnKF is a Monte Carlo implementation of 

Kalman filter, in practical applications it is limited  

to small ensemble size due to computational limitations. 

Use of ensemble with small size leads to appearance of 

spurious correlations in estimated cross-covariance 

matrices required for assimilation while in reality these 

correlation doesn’t exist [7]. Wrong correlations between 

entries of covariance matrices causes incorrect state 

vector update, resulting underrate posterior state 

covariance estimation. Repeating the assimilation cycles 

with such behaviors rapidly diminishes ensemble 

variance toward zero [4]. 

One readily approach to cope with the aforementioned 

problems is to use of a large ensemble set but 

unfortunately, this requires a high computational time. 

The number of unknowns (both parameters and states)  

in the geological and flow models, four or more 

parameters/variables per grid block and the huge number 

of simulation grid blocks prevents the use of large 

ensemble size. Therefore, motivation is raised to use any 

rational paradigm to do history matching efficiently  

by the use of small size ensembles.  

Multiplying estimated state error covariance matrix 

elementwise with a locally supported correlation matrix 

yields an approach to overcome the small ensemble 

effects to some extent [4]. This approach known  

as covariance localization assumes that states beyond  

a specific distance from observation location are affected 

lesser by that observation. In the first application of 

covariance localization, a cut off radius was applied  

to assimilate observation just within circle formed by  

the radius [8]. Following [8], the authors developed a distance 

dependent localization approach [9] that employs  

a spatial correlation function with compact support to form 

localization matrix to filter out incorrect estimated 

covariance. With emphasis on the importance of covariance 

localization, this idea becomes a great deal of research. 

Several other methods, also, have been presented in order 

to cope with various aspect of localization which has their 

own merits and demerits [10-13].  

In this work, it is aimed to investigate and compare 

various distance dependent correlation function which  

are employed to build localization matrix by comparing 

the ability and behavior of spatial distance dependent 

correlation function in the oil reservoir history matching. 

Here, we compared five different common correlation 

functions [14], namely, fifth-order correlation function (FIF), 

Third Order Autoregressive (TOA) function, exponential 

function (EXP), Second Order Autoregressive (SOA) 

Function and  quartic function (QUA) to investigate their 

superiority. 

This work is organized as follow; in this section,  

we present the EnKF formulation in history matching 

framework. Then the covariance localization along with 

correlation functions are described. Results of various 

correlation functions during history matching on two 

different test cases; a linear 2D static model and   

a 2D two-phase oil-water flow case, are presented along with  

a discussion subsection. Finally, we summarized our 

finding in conclusion. 
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ENSEMBLE  KALMAN  FILTER  FOR  HISTORY  

MATCHING 

Let x and d be a state vector of size n×1 and 

observation/measuring data of size d×1  in which their 

time propagation follows a Linear Time-Varying (LTV) 

model dynamic with white Gaussian model noise w and 

white Gaussian measurement noise v:  

                                                          (1) 

                                                                (2) 

Here, matrix M and H are model propagator and 

observation operator, respectively. It should be noted that 

there is no external input explicitly in the model. Indeed, 

it has been assumed that the reservoir is under normal 

operation (no change in production/injection flow rate)  

or is operating in a closed loop manner with no change  

in setpoints. We will drop subscript time t for the sake  

of easy development. The well known Kalman Filter (KF) 

optimally calculates the analysis state xa (posteriori  

or updated estimate) through integration of model dynamic 

forecast xf (prior forecast) of Eq.(1) with measurements 

coming from real system as:  

                                                   (3) 

                                                           (4) 

Here, matrix P of size n×n is state error covariance 

and subscripts f and a representing forecast and analysis 

and K is Kalman gain of size n×d which is obtained as: 

                                           (5) 

Here T is matrix transpose and R of size d×d represent 

observation error covariance matrix [15]. For large scale 

systems the propagation and storage of covariance 

matrices is not feasible and often impossible. Aside from 

this, real systems are nonlinear both in model and 

observation dynamic equations. These facts suggest 

incapability of KF for such systems. Evensen proposed  

a Monte Carlo implementation of KF [16]. In Ensemble 

Kalman Filter (EnKF) Probability Density Function (PDF) 

of the state vector is represented by a finite Ne number of 

randomly generated realizations xi(i=1,2,…,Ne) of system 

initial PDF. The ensemble set carries both state and state 

error covariance through propagation and updating of 

each member. Here, xi is an ensemble member of equal 

dimension of state vector. The estimate of state vector is 

the mean of ensemble set as the best estimate of states: 

                                                                   (6) 

And the required covariance matrix can be easily 

obtained from the ensemble set as: 

                                     (7) 

The EnKF procedure can be described as follow.  

At first, Ne realizations are generated from initial state vector 

x0 and its associated error covariance matrix P0. All  

of generated realizations are then propagated with nonlinear 

model dynamic equation F (in our case a reservoir 

simulator) until a new observation becomes available 

(first step of data assimilation or prediction step): 

                                   (8) 

Note that Eq. (8) is used for nonlinear forecasting  

of states instead of LTV equation (1).With measurement 

data and forecasted realizations being available,  

all requirement to perform calculations in Eq.(3)  

are provided: 

                         (9) 

After updating of all ensemble members are 

accomplished, these members are used as initialization of 

next assimilation cycle.  

Some researchers have proven that utilizing the single 

obtained measurement d from real system in assimilation 

procedure results in analysis error covariance Pa being 

  value less than of the value given by 

Kalman filter theoretical equation, Eq.(4), [17,18].  

By performing assimilation using measurement d 

successively, most of ensemble member collapse to  

a single realization causing filter divergence. To avoid such 

divergence, they proposed applying a realization of 

measurement vector di (i=1,...,Ne) instead of employing d 

straightforward in assimilation process. Here, di is  

a perturbed observation, which is computed with addition 

of random error with mean zero and covariance matrix 

equal to measurement covariance to real observation d. 
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To perform petroleum reservoir history matching,  

at first it is required to generate an ensemble of reservoir 

that follows unknown reservoir geostatistical model. 

Next, all members should be propagated with a reservoir 

simulator to next measurement time. With observation 

availability and computation of Kalman gain, someone 

can condition ensemble set to new data with EnKF  

as described above. The whole procedure is repeated if there 

is more observation. In this case, the state vector x  

is defined to contain states of system (pressure and 

saturations of present fluid phases in the reservoir), and 

parameters of system (natural logarithm of permeability). 

Hence, the augmented states are defined as 

. Pi, si, and lnki are pressure, saturation, 

and log-permeability of ith realization, respectively.  

 

COVARIANCE LOCALIZATION 

As it is stated before, in practice, EnKF 

implementation is limited to small ensemble size. 

Working with small number of realizations introduces 

sampling error and causes inappropriate covariance 

propagation in ensemble members. To mitigate this 

problem and increasing the effective ensemble size 

(without actually using higher ensemble number) the 

covariance localization is proposed [8]. There are 

currently some different techniques for covariance 

localization [11, 12, 21]; but we will use the distance 

dependent types of localization techniques. In this 

method, instead of applying forecast error covariance 

matrix Pf directly to update ensemble set, it is replaced 

with its scaled version, the localized covariance matrix:  

                                                                   (10) 

This correlation matrix provides more weight to  

the points near observations than points far away in a region 

defined by critical length do. Matrix  is known as 

localization matrix (or sometimes correlation matrix) 

which is positive definite and the operator  indicates 

the Schur product which is element-wise matrix 

multiplication. In [4], authors discussed that due to Schur 

product properties the rank of localized covariance matrix 

  is larger than original covariance leading to more 

stable EnKF performance. Gaspari & Cohn [14]  

provided some criteria that such a matrix should fulfill. 

They also provided some functions which produce such 

correlation matrix. Here we will bring five of the 

recommended functions to apply in history matching 

problem. To see the descriptions and properties of 

following functions see [14]. r is physical distance 

between any state point to another one in all state vector 

entry point. 

1- Fifth-order correlation function (FIF) 

 (11) 

 

2- Third order autoregressive function (TOA)  

                                      (12) 

 

3- Exponential  Function (EXP) 

                                                     (13) 

 

4- Second order autoregressive function (SOA) 

                                                  (14) 

 

5- Quartic function (QUA) 

                                 (15) 

 

In fact, r is a dimensionless length which is calculated 

by dividing actual Euclidian length between any two 

points of state vector to a critical correlation length Lc. 

The critical length represents the maximum correlation 

lengths in a systems in which beyond of it correlation  

is zero or negligible. There is another correlation function, 

Gaussian, that is much suited for but its properties  

are similar to the fifth-order correlation function,  

so it is not considered here. The behaviors of correlation 

functions with dimensionless length are displayed in Fig. 1.  

As it can be observed third and second order 

autoregressive correlation functions have the most 

extreme behaviors after dimensionless r=1 meanwhile 

others rapidly decrease after this distance. QUA  

function seems has an interesting behavior; it reach  

to zero just before r=1.  
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Fig. 1: Correlation functions behavior with dimensionless 

length. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: True permeability field of test case one and 

measurement location (red circle). Note: in all figures,  

the legend shows the logarithm of permeability. 

 

 

EXPERIMENTAL  SETTING 

Test case 1: 2D linear model  

For this test, we consider an unreal 2D linear 

permeability model. The model is a synthetic 2D 

reservoir with size of 41×41 uniform grid blocks, totally 

1681 grid blocks permeability to be estimated.  

To perform the EnKF, realizations of reservoir are acquired 

through the so-called sampling process. For this, the true 

permeability model (Fig. 2) is generated with  

an anisotropic spherical covariance with major correlation 

range of 20 grid blocks and minor correlation range of  

8 grid blocks. The major correlation length is oriented 

along 45 degree anticlockwise from x-axis coordinate. 

The permeability model generation is performed applying 

sequential Gaussian simulation module of SGeMS [22] 

without any hard data conditioning. The prior log-

permeability mean and variance are 4 and 1, respectively. 

Ensemble set is also generated using the true model 

procedure and its covariance. To obtain observation data, 

it is supposed that measurements are directly available 

from true reservoir model with a measurement error.  

The error is a white Gaussian noise with zero mean and 

standard deviation of five mD. The filled circles in Fig. 2 

represent the measurement location, totally 64 data point. 

It should be noted that true model is just an unknown 

model that should be obtained by applying the data 

assimilation from measurement data.  

For this linear case, we can compare the results of 

EnKF with best possible solution obtained by Maximum 

A Posterior (MAP) method [19]. This solution for linear 

Gaussian dynamic in Bayesian integration framework  

is obtained by minimizing following objective function: 

                                 (16) 

 

m contains the reservoir parameters (here log-

permeability of reservoir grid blocks) and mp is prior 

knowledge of the parameters. Cm and Cd are covariance 

matrix of the parameters and measurements, respectively. 

By analytical minimizing of Eq.(16), MAP solution  

can be calculated: 

    (17) 

We will use the MAP solution to compare the EnKF 

results. 

In this test case, the state vector in EnKF is just log-

permeability values. We applied the EnKF procedure 

described in previous section to assimilate permeability 

measurement data accordingly, for two different 

ensemble set of 10 (set A) and 25 (set B) realizations.  

To compare the assimilation results with use of various 

localization functions for small ensemble, the MAP and 

large ensemble size posteriori are also calculated for. 

Fig. 3 (left) depicts the prior ensemble mean of 

ensemble set A which is going to be used for assimilation 

process latter. In the center of this figure, the MAP 

estimation from applying ensemble set A and 

measurement data is displayed. And finally, the mean of 

EnKF estimation without localization utilizing 1000 

realizations is shown in right part of Fig. 3. 

Comparing Figs. 2 and 3 reveals that MAP and 

( ) ( ) ( )m d2O m 2O m 2O m= + =

( ) ( ) ( ) ( )
T T1 1

p m p dm m C m m Hm d C Hm d− −− − + − −

( ) ( )
1

T T
MAP p m d m pm m C H C HC H d Hm

−
= + + −

 

 

1

2

3

4

5

6

7

FIF 
 
TOA 
 
EXP 
 
SOAR 
 
QUA 

Dimensionless length 

1 

 
0.8 

 
0.6 

 
0.4 

 
0.2 

 
0 P

o
st

er
io

r 
co

n
v

a
ri

a
n

ce
 e

ig
en

v
a

lu
e 

0                        1                        2                       3 



Iran. J. Chem. Chem. Eng. Biniaz Delijani E. et al. Vol. 33, No. 1, 2014 

��

80 

 

 

 

 

 

 

 

 

 

Fig. 3: Mean of ensemble set A (left), MAP estimation for set A (center), mean of EnKF without localization for 1000 realizations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Estimated permeability map for ensemble set A with different localization functions; NOL refers to no localization. 

 

EnKF with large ensemble size estimated high (lower 

area in Fig. 2) and low (upper area in Fig. 2) permeability 

regions (high-low permeability features) of true model 

quite similarly but still MAP estimate is better.  

The localization functions described in previous section are 

employed within EnKF to estimate permeability of true 

model with critical length equal to 15 grid blocks.  

We should point out that this number is obtained by trial and 

error. Fig. 4 represents the estimated permeability map  

by employing various localization functions and EnKF 

for ensemble set A. The case without localization is also 

presented for comparison. It is obvious that fifth order, 

exponential and quartic correlation functions have 

produced nearly similar results and much better than 

autoregressive variants. In addition, provided permeability 

map of all localization functions is much better than  

no localization case within the same assimilation procedure. 

Especially, low-high permeability strikes are almost never 

characterized in the NOL (no localization function) case.  

Similar to ensemble set A, the whole process was 

repeated for ensemble set B to see the effect of larger 

ensemble size (25 realizations). In Fig. 5 similar results of 

Fig. 3 is presented. Increasing the ensemble number 

provides more prior information to MAP solution leading 

to more accurate permeability estimation than ensemble 

set A (compare middle Figs. 3 and 5).  

Results of assimilation procedure for ensemble set B 

with and without localization are displayed in Fig. 6. 

With increasing ensemble size, estimated permeability 

map of all localization functions but spherical are similar 
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Fig. 5: Mean of ensemble set B (left), MAP estimation for set B (center), mean of EnKF without localization for 1000 realizations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Estimated permeability map for ensemble set B with different localization functions, NOL refers to no localization. 

 

and again better than no localization case. There are some 

tools to evaluate the performance of localization. In order 

to investigate the effect of localization on assimilation 

results, eigenvalues of posterior permeability covariance 

for each localization function and for two ensemble set 

are calculated are results are presented in Fig. 7. In this 

figure, the y-axis represents the values of eigenvalues  

in descending order 

There are some interesting points that can be observed 

from Fig. 7. At first, for both ensemble set A and B, the 

eigenvalues of no localization case are smaller than any of 

with localization cases. Increasing the ensemble size increases 

the number of nonzero eigenvalues which provides higher 

rank for posterior covariance. The eigenvalues range comes 

closer for larger ensemble set meaning the importance of all of 

Eigen mode of the system simultaneously. The TOA and 

SOA have similar eigenvalues and those values are smaller 

than other localization function. This can quite fairly explain 

the better results obtained for FIF, EXP and QUA relative  

to TOA and SOA earlier.  

To see the effect of critical correlation length on the 

history matching results, results of data assimilation of 

ensemble set B for critical length equal to 4 and 20 grid 

blocks are presented in figure 8 and 9, respectively. 

From Figs. 8 and 9 the importance of critical length 

correct selection is revealed. Choosing inappropriate critical 

length for all localization functions have severe drawback 

on assimilated results. It is notable that TOA and SOA  

are more robust on critical length value than other localization 

functions as can be seen from Figs. 6, 8 and 9. 
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Fig. 7: Eigenvalues of posterior permeability covariance for both ensemble set and each localization functions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8: Estimated permeability for ensemble set B with critical length 4 grid blocks. 

 

Test case 2: 2D nonlinear dynamic 

For this test case, history matching of a two 

dimensional – two phases oil - water flow synthetic 

reservoir was considered. The reference model of test 

case 1 is employed here as true permeability field  

to generate measured production data. The dimension  

of each grid block is fixed as 40×40×10 ft. An inverted five 

spot water flooding well pattern is established: a water 

injector in the center of 2D reservoir and four producers 

at four corners of it. Water is injected with constant rate 

of 500 STB/D. All producers have constant bottomhole 

pressure set at 3000 psi. Table 1 presents the summary 

data of the water-flooding pattern. 

Initial reservoir oil pressure and connate water 

saturation are 3000 psi and 0.2, respectively. Grid block 

porosity is fixed to 20 %. True permeability field  

is employed to generate the reference production data. 

Production data set consist of injection well bottomhole 

pressure and oil - water production rates from producers; 

totally 9 data for each assimilation cycle. Production data 

are obtained every 2 months for three years of reservoir 

production providing 18 assimilation cycles. The “true” 

FIF

SOA

TOA

QUA 

EXP

NOL
SOA QUA NOL

FIF 
 

TOA 
 

EXP 
 

SOAR 
 

QUA 
 

NOL 

Eigenvalue number 

30 

 
25 

 
20 

 
15 

 
10 

 
5 

 
0 P

o
st

er
io

r 
co

n
v

a
ri

a
n

ce
 e

ig
en

v
a

lu
e 

0                            5                           10                         15 

FIF 
 

TOA 
 

EXP 
 

SOAR 
 

QUA 
 

NOL 

0                             10                            20 

Eigenvalue number 

6 

 
5 

 
4 

 
3 

 
2 

 
1 

 
0 P

o
st

er
io

r 
co

n
v

a
ri

a
n

ce
 e

ig
en

v
a

lu
e 



Iran. J. Chem. Chem. Eng. Distance Dependent Localization Approach ... Vol. 33, No. 1, 2014 

��

83 

Table 1: Summary of the well patterns for test case 2. 

Well Inj P1 P2 P3 P4 

Well type Injector Producer Producer Producer Producer 

x location 21 5 5 36 36 

y location 21 5 36 5 36 

Constraints 500 STB/D 3000 psi 3000 psi 3000 psi 3000 psi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9: Estimated permeability for ensemble set B with critical length 20 grid blocks. 

 

production data are then perturbed with a white Gaussian 

noise with mean zero and standard deviation of 8 psi and 

4 STB/D for bottomhole pressure and production rate, 

respectively, to emulate noisy measurement data. True 

and noisy production data are plotted in Fig. 10. It is 

worth to emphasize that the reason this model was 

selected for case 2 is that it has strong heterogeneity 

within. This leads to a more challenging problem and  

a better test case to compare correlation functions. 

To evaluate filter performance two different criteria 

are applied: Root Mean Square Error (RMSE) and 

ensemble spread. A convergence of assimilation process 

will yield diminishing of both RMSE and spread along 

time. These criteria are defined in Eq. (18) and (19), 

respectively [23]. 

                    (18) 

Here x is natural logarithm of permeability, xt 

represents true permeability in case of twin experiment 

and N is the total number of estimated parameters. 

                          (19) 

In this formula   is mean of estimated ensemble.  

It should be pointed out that to obtain a scalar value of 

RMSE and spread at any time someone required  

to calculate an average over all grid blocks.  

The history matching process is performed as 

described in section 2. The results of applying 

localization with critical length equal to 30 grid blocks 

for three different ensemble sizes 25, 50 and 100 member 

are depicted through Figs. 11, 12, 13, respectively in the 

same uniform scale.  

Ensemble set with size 25 members is almost 
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Fig. 10: plot of production data, injection pressure (up), oil 

and water production rates (middle and down), the circles 

show noisy observation, and sold lines are true production. 

Color represents different well. 

incapable to recover the main trend in reference map. 

Estimated map in this case is not only far from true but 

also represents severe overshooting (values too much 

greater than the maximum value in reference map)  

in estimated permeability. Although, results of QUA/FIF 

function are better from other ones and display less 

overshooting. 

For case with 50 realizations (Fig. 12) results are 

better than the aforementioned one with much lower 

overshooting values. But still, noisiness in characterized 

maps is lucid. Among the correlation functions, QUA/FIF 

are able to retrieve some of the main features and trends 

in true case. A notable recovered trend of QUA that  

all other correlation functions yet failed to identify,  

is the top-left low permeability curvilinear strike in the true map. 

Finally, in Fig. 13 the estimated permeability map for 

the 19th assimilation period is depicted. The first idea 

comes from this figure is the smoothness of estimated 

localized map of FIF/QUA relative to NOL and other 

functions. This property, also, occurs in Figs. 11 and 12 

but here it is much more obvious. Here, QUA and FIF 

results are very similar in part similar to true. 

The RMSE and spread of localization functions with 

different critical lengths and ensemble sizes are computed 

and plotted in Figs. 14 and 15, respectively. In both 

figure 14 and 15, each row is for a specific ensemble size: 

25, 50, and 100 from top row to bottom. Each column 

represents a particular critical length: from left to right 5, 

15 and 30 grid blocks in order.  

As it is clear from RMSE equation, smaller RMSE 

dedicates closer estimation to true permeability values. 

This implies that as assimilation progress in time it would 

be natural to obtain smaller RMSE. However, as it can be 

observed from Fig. 14 (black line), regardless of 

ensemble size, RMSE of no-localization case (i.e. pure 

EnKF) follows either an oscillatory trend (case Ne = 100) 

or diminishing-increasing trends (case Ne = 25/50).  

In other word, EnKF alone cannot recover the true 

permeability map by assimilation of production data. 

The reason for such behavior against our intuition is  

a research topic and we are not going into it. But the 

localization procedure attempts to mitigate the problem. 

Interesting point is that increasing the critical length lead 

to no-localization case performance. As can be seen  

in Fig. 14, for different localization function different 

optimal critical length is required. 
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Fig. 11: Estimated permeability for Ne = 25 with critical length 30 grid blocks for the last assimilation cycle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12: Estimated permeability for Ne = 50 with critical length 30 grid blocks for the last assimilation cycle. 

 

Another point is that for small critical length the 

QUA, FIF and EXP provide more robust performance but 

slowly decreasing RMSE than other two functions.  

For medium critical length QUA and EXP display a more 

robust one. Finally, for large critical value, the 

performance of localization approaches to no-localization 

case results. As ensemble size grows, for small critical 

length value, SOA produces best diminishing RMSE with 

a robust trend and for medium one; EXP, QUA and FIF 

produce diminishing RMSE with a robust trend.  

Fig. 14 confirms pervious stated conclusion [9]  

on critical length value in distance-based localization that 

was used for state estimation; here instead for parameter 

estimation: As the ensemble size grows (25, 50 and 100) 

the optimal critical value to perform better results 

increase.  

It is notable to point out that spread represents  

the total variance in each component of state vector. And 

the scalar value calculated and displayed in Fig. 15 is  

the total variance of all members for all grid blocks 

permeability. So as it is clear in Fig. 15, as data  

are integrated into realizations, the total variance of system 

decrease. This is something that our intuition states.  

The interesting point is that regardless of localization 

functions or critical lengths, the total variance of 

localized cases are greater than no-localization case 

True FIF

EXP
TOA

SOA

EXP

QUA 

QUA 

SOA

NOL

NOL

True EXP

QUA 

QUA FIF

EXP SOA

NOL

TOA

SOA

NOL



Iran. J. Chem. Chem. Eng. Biniaz Delijani E. et al. Vol. 33, No. 1, 2014 

��

86 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13: Estimated permeability for Ne = 100 with critical length 30 grid blocks for the last assimilation cycle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14: Plot of root mean square error (RMSE). From top to bottom, ensemble size for each row is 25, 50 and 100.  

From left to right critical lengths are 5, 15 and 30 grid blocks. N is number of realizations. 
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Fig. 15: Plot of spread. From top to bottom, ensemble size for each row is 25, 50 and 100. From left to right critical lengths are 5, 

15 and 30 grid blocks. N is number of realizations. 

 

no matter what. This was one of localization priority aim 

to maintain the variance of the system as far as possible. 

Another note from Fig. 15 is that although QUA and FIF 

functions maintain the largest total variance but QUA  

is the only function that outperform other functions in term 

of total variance in all cases presented in Fig. 15. 

The uncertainty of predicted future production profile 

can be helpful to see even more on localization performance. 

To view this, the estimated permeability maps of all functions 

were utilized in a reservoir simulator and simulations 

were performed from time zeros to 10 years ahead. The 

results are tremendous amount of data for analysis.  

We brought here data of oil and water production 

rates of well P3 for case 50 realizations with localization 

length of 15 grid blocks. Figs. 16 and 17 depict the true 

oil and water production from reference permeability 

(circle), all realizations (curves), the mean of realizations 

map (star) and finally the vertical line dividing the figures 

into history matched part (left part) and predicted part 

(right one). The reason that well P3 is selected to present 

its simulation results is that no water rate of P3 was 

employed during assimilation process. This makes the P3 a 

good candidate for such purpose.  

For every time step (along x-axis in Fig. 16 and Fig: 17), 

we define the uncertainty merely as envelops made around 

true production data. For history matched section, QUA 

and TOA provide relatively good encompass (Fig. 16), 

meaning true data is between the extreme blue lines 

(realization data), but this cannot be stated for NOL case as 

history never matched correctly (see NOL in Fig. 16 and 17).   
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Fig. 16: Oil production profiles of well P3, True data (red circle), realizations (light blue), mean realizations map (magenta star), 

before /after vertical line: history and predicted production, x- axis: years of productions, y-axis: oil production rates STB/D. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17: Water production profiles of well P3, True data (red circle), realizations (light blue), mean realizations map (magenta star), 

before /after vertical line: history and predicte production, x- axis: years of productions, y-axis: water production rates STB/D. 
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Estimated uncertainty for prediction phase is quite 

notable for various localizations. Neither of the methods  

are able to recover the water breakthrough time and some 

part of water production rates and the estimated mean 

breakthrough is biased overly for all (Fig. 18). QUA and 

TOA functions have some members that encompass true 

water production. 

 
DISCUSSION 

We define any estimated permeability value greater 

than the highest/lowest permeability in the reference map 

as overshoot/undershoot. The common overshoot/undershoot 

is not a problem in history matching because this type of 

inverse problem cannot be solved uniquely [1]. It can be seen 

from figures 11 to 13 that, the localization process n 

ot only mitigates the overshooting problems (compare  

to NOL) but also attempt to avoid the overshooting as far as 

possible. It is also can be observed that in the NOL case, 

the estimated permeability map start to deteriorate very 

soon with more assimilation performed (as is depicted in 

RMSE values in Fig. 14).  

Results indicate that in case of no-localization with 

sufficient large ensemble size, the overall high-low permeability 

features in the reference map can be identified as early as 

possible in assimilation cycles. However, the estimated 

features tend to deteriorate as more assimilation performed.  

It is also verified that with more and more assimilation 

cycles, in no-localization case the estimate collapse  

to single mean estimate of whole domain defined  

by ensemble members. Although localization removes some 

information from cross-covariances during assimilation, 

causing later identification of high-low features, but 

inclines to carry out a more robust estimation.  

Localization, at least the cases we studied here, forces 

the estimated permeability maps (or any other state vector 

values) to be smoother. This can lucidly be observed from 

comparison of no-localization and localization results. 

It is obvious that as critical length increases toward 

domain boundaries and beyond, the estimated map results 

approach to no-localization results (see Fig. 14). This 

highlights one thing clearly: the importance of correct 

critical length employment. Harms caused by incorrect 

critical length to assimilation results suggest to 

implement distance based covariance localization more 

carefully, specially it would be better to not apply 

distance based localization in case of inappropriate 

critical length estimation. Authors in [7] suggested  

a method to obtain critical length but require somehow use 

of streamline simulation and sensitivity calculations, 

which are not available easily. It is also interesting that  

as ensemble number increase the stable critical length  

for localization increases.  

Results, both in test case 1 and 2, suggest that TOA 

and SOA correlation functions perform almost similarly, 

but for large ensemble size SOA run more robust results 

with smaller critical length, although not able to find the 

high-low profiles. Another notable point for these 

correlation functions is that they produce more similar 

results to no-localization case relative to others. This can 

be explained from Fig.1: these two functions remove less 

incorrect information from cross-covariances.  

Although our survey in literatures indicates that the 

FIF correlation function has been applied for distance 

based localization most of time [4], [7], [11]. Our results, 

however, indicate that QUA is not only yield robust 

permeability estimation but identify the high-low 

permeability features and their positions more correctly 

without uncommon overshooting and yet maintaining 

more total variance at the end of assimilation. To confirm 

this see Fig 14, 15 and Fig. 12, 11 and 10. Of course,  

the topic demands more research with implementing  

the functions on more cases like real/fracture reservoirs [24]. 

 

CONCLUSIONS 

A sequential EnKF was developed to perform the history 

matching of reservoir model. To mitigate the spurious 

correlation effect on covariance due to small ensemble 

size, a distance base localization is employed. To investigate 

the behavior of different correlation functions that are 

utilized for localization, a comparative study are accomplished. 

The procedure is evaluated on two different test cases, 

one linear-static and the other a nonlinear-dynamic case.  

In terms of uncertainty estimation the overall 

localization results was quite superior to NOL and among 

themselves, the FIF and QUA produced similar results. 

Results indicate that QUA functions is equally likely 

applicable for history matching procedure and provides 

similar or better results relative to traditional popular FIF. 
 

Nomenclatures 

x                                                     State vector of size n×1 

d                                         Observation vector of size d×1 

M                                              Model propagator operator 
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H                                                        Observation operator 

xa                                                        Analysis state vector  

xf                                                         Forecast state vector 

P                         State error covariance matrix of size n×n 

P̂                           Localized state error covariance matrix  

K                                       Kalman gain matrix of size n×d 

Ne                                                        Number realizations 

N                                    Total number of active grid block 

xi                                                                   i th realization 

F                                                Nonlinear model dynamic  

w                                            White Gaussian model noise 

v                                 White Gaussian measurement noise 

di                                            Perturbed observation vector 

pi                            Pressure state vector of i th realization 

si                          Saturation state vector of i th realization 

lnki                        Natural logarithm of permeability state  

                                                      vector of i th realization 

di                                       Predicted data of i th realization 

m                                                       Reservoir parameters 

mp                  Prior knowledge of the reservoir parameters 

Cm                             Covariance matrix of the parameters 

Cd                               Covariance matrix of measurements 

r                                                         Dimensionless length 

Lc                                                Critical correlation length 

ρ                                                           Localization matrix 

f                                                                              Forecast 

a                                                                             Analysis 

ft                                                     Foot (here, length unit) 

EnKF                                             Ensemble Kalman filter 

PDF                                        Probability density function 

FIF                                     Fifth order covariance function 

TOA         Third order autoregressive covariance function 

EXP                                 Exponential covariance function 

SOA       Second order autoregressive covariance function 

QUA                                       Quartic covariance function 

NOL                                             No localization function 

DEnKF                    Deterministic ensemble Kalman filter 

STB/D                                         Stock tank barrel per day 
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