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ABSTRACT: Calcined Kaolin / Calcium carbonate / TiO2 (KCT) composites were prepared using 1:1:1 

and 1:1:2 proportions at 1000 °C calcination temperature.  The efficiency of KCT composites  

on the decolorization of Reactive Black 5 (RB5) effluent was investigated based on the composite 

concentration, pH, and time of treatment. Box and Behnken experimental design was used to optimize  

the decolorization efficiency of RB5 using KCT composites, followed by modeling of the treatment using 

an artificial neural network. Optimized parameters based on the Box and Behnken design for 1:1:1 KCT 

composites resulted in a decolorization efficiency of 94.5 %, using 20 g/L composites treated at pH 3  

for a treatment duration of 3 hours 48 minutes. Similarly, for 1:1:2 KCT composites, 94 % decolorization 

efficiency of RB5 effluent has been achieved using 18.9 g/L composite treated at pH 3.5 for a treatment 

duration of 3 hours 56 minutes. Experimental results and the predicted results show close conformity  

in decolorizing RB5 effluents using KCT composites. Physico-chemical treatment of dyes using KCT 

composites was found to be efficient due to the formation of calcium silicate and calcium titanate, 

resulting in a strong photocatalytic adsorbent, leading to physical sorption and photochemical oxidation. 
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INTRODUCTION 

The rising use of textiles globally has never put a rest on 

these industries [1] and the global textile market is expected 

to grow by US$ 549.9 billion from 2021 to 2025. According to 

the claims made by the World Health Organization, these 

industries contribute around 17-20 % of the total pollution. 
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Estimations show ~ 80% of dyes used for the applications 

of textiles are azo dyes. Though most of the dyes have good 

affinity towards the textile materials around    15 – 20 %  

of dyes are expected to wash out of textile on usage adding 

to pollution load [2]. Dyes have also found to release toxic 
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amines putting water bodies at high risk. Thus treatment of 

dye effluents has been made as one of the important effluent 

treatment processes over years [3]. There have been 

physical, chemical, physico-chemical, biological and 

electrochemical methods of treating dye effluents [4].  

Physical treatment methods include membrane 

filtration and adsorbents for physical entrapment of 

effluents [1], however membrane and adsorbents are 

costlier and disposal of the same after usage seems to be the 

most challenging task. Chemical treatment methods utilize 

various chemical interactions using coagulants, flocculants, 

Fenton’s reagent and oxidizing agents. These chemical 

reagents generate huge amount of useless sludge [5]. 

Decolorization of dyes by using aerobic and anaerobic 

microorganisms breaks the azo groups in dye, however, it 

results in aromatic amine byproduct which could be a threat 

to the environment [1].  Electrochemical methods of dye 

removal efficiently decolourises dyes by electro 

coagulation and anode interactions. Compared to other 

methods discussed above, electrochemical interactions 

with dye effluents produce less sludge, however end up  

in the formation of unavoidable toxic compounds [5,6]. 

Recent studies on dye effluents using Advanced Oxidation 

Processes (AOPs) have provided certain promising 

outcomes in dye effluent treatments [7]. AOPs have 

capabilities of oxidizing organic and inorganic compounds 

by generation of strong oxidizing agents and hydroxyl 

radical (•OH). UV-Photolysis AOPs using Titanium 

dioxide (TiO2) produces hydroxyl radical (•OH) by UV 

irradiation and is found to be popular among AOPs due to 

its cost, non-toxic nature and commercial availability. Studies 

show that the quantum yield of TiO2 responsible for oxidation 

and reduction of contaminants are low and thus simple 

modifications can aid in improving its performance [8]. 

TiO2 in its natural and modified nano forms have been 

interacted with clay minerals by electrostatic interaction, 

complexation of clay surfaces and coordination of ionic 

species on the clay surfaces [9].  Synthesis of TiO2 – 

Zeolite photocatalyst composite prepared using 

solvothermal method has effetively decolourised 

Methylene Blue with 99% efficiency [10]. Similarly 

synthesis of TiO2-Fe3O4-Bentonite clay prepared by sol gel 

method have been found to be effective in Decolorization 

of Basic Blue 41 [11]. Though most of the recent study is 

emphasized on the use of nano TiO2 for the formation of 

composites, its use has been highly criticized for its 

carcinogenic, genotoxic and photosensitization behavior 

by researchers [12].  On the other hand TiO2 in its natural 

form is found to be non-toxic and safe to the environment.  

Usage of statistical tools in determining the efficiency 

of Decolorization percentage of dyes has been a key  

to understand various influencing factors [13]. Design of 

experiments like Taguchi, Box Behnken, central 

composite designs have been used for such optimization 

processes [14,15]. ANN modeling is known for its 

optimization and precise predictions of the experimental 

data with better reproducibility [16].  ANN has the 

capability of learning from a set of training data and 

effectively provides its corresponding outputs [17–19].  

The major objective of the present study is to 

investigate the physico-chemical oxidation efficiency of 

the prepared KCT composites of proportions 1:1:1 and 

1:1:2 on Decolorization of RB5 effluents by UV-

Photolysis AOP. Box and Behnken design of experiments 

is used to optimize the variable parameters (composite 

concentration, pH and time of treatment) along with 

Response Surface Modeling (RSM). ANN model, is used 

to predict Decolorization the efficiency using four input 

parameter namely, composite concentration, pH, treatment 

time and composite proportion by varying the network 

parameters namely, learning rate, momentum constant, 

number of hidden layers, number of nodes in each hidden 

layers and number of cycles.  

 

EXPERIMENTAL SECTION 

Reactive dye 

Jackzol Black BN 150 with the C.I name Reactive 

Black 5 and C.I Number 20505 was supplied by Jay 

Chemical Industries Limited, Gujarat, India and was used 

for the study without any further modifications [20]. 

 

Chemicals 

Laboratory grade chemicals were used in this study. 

Kaolin was purchased from Loba Chemie Pvt Ltd, India, 

Calcium Carbonate (CaCO3) was purchased from S D Fine 

Chem Limited, India and Titanium Dioxide (TiO2) was 

purchased from Merck, India. 

 

Preparation of dye effluent 

Dyeing of cotton was carried with Reactive Black 5 

using the recipe shown in Table 1. The dye effluent after 

dyeing were collected for further studies [20] . 
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Table 1: Dye Recipe. 

Reactive Black 5 2% (owf*) 

Sodium chloride 40 g/L 

Sodium carbonate 15 g/L 

Temperature 70°C 

Time 60 minutes 

M:L ratio** 1:40 

*owf – on weight of fabric; 

**M:L ratio – Material-to-liquor ratio 

 

KCT preparation 

Calcination of Kaolin (2𝐴𝑙2𝑆𝑖2𝑂5(𝑂𝐻)4)/Calcium 

carbonate (CaCO3)/Titanium dioxide(TiO2) (KCT) 

composite at proportions 1:1:1 and 1:1:2 respectively 

was carried out using a muffle furnace. The samples 

 were calcined at 1000 °C with a heating rate of 10 °C  

per minute and were held at final temperature for a period 

of 1 hour in an air environment. These proportions and 

calcinations temperatures were chosen based on the 

conditions required for the formation of calcium silicate 

(𝐶𝑎2𝑂4𝑆𝑖) and calcium titanate (𝐶𝑎𝑂3𝑇𝑖) [21,22] that 

contributes physical sorption and photochemical 

oxidation respectively [23] and its thermal transition is 

shown in equation [1 - 6].  

CaCO3
∆ 
→𝐶𝑎𝑂 + 𝐶𝑂2 ↑ (1) 

𝐴𝑙2𝑆𝑖𝑂5(𝑂𝐻)4
∆ 
→𝐴𝑙2𝑆𝑖𝑂7 + 4𝐻2𝑂 ↑ (2) 

𝑇𝑖𝑂2
∆ 
→𝑇𝑖𝑂2 (3) 

2𝐴𝑙2𝑆𝑖𝑂7 
∆ 1000℃
→      𝑆𝑖3𝐴𝑙4𝑂12 + 𝑆𝑖𝑂2 (4) 

3𝑆𝑖3𝐴𝑙4𝑂12
∆ 1000℃
→      2𝑆𝑖3𝐴𝑙6𝑂13 + 5𝑆𝑖𝑂2 (5) 

3𝐶𝑎𝑂 + 𝑆𝑖𝑂2 + 𝑇𝑖𝑂2
∆ 1000℃
→      𝐶𝑎2𝑂4𝑆𝑖 + 𝐶𝑎𝑂3𝑇𝑖 

(6) 

 

Decolorization analysis 

The prepared composites were cooled and stored until 

further usage. Dye effluents were treated using the 

composites in a UV chamber (Figure 1) and the absorbance 

was measured using UV-Vis Spectrophotometer (Shimadzu 

UV 1700), capable of scanning the samples in wavelength 

range 190 - 700 nm. Decolorization (%) of the sample  

was expressed as the ratio of difference between initial 

absorbance [𝐼0] and final absorbance at time t [𝐹𝑡]  

to the initial absorbance (David, Arivazhagan, et al., 2015)  

Table 2: Coded and actual values of experimental design. 

Coded 

Variable 
Description of the variable 

Coded and Actual Values 

-1 0 +1 

X1 Concentration of Composite (g/l) 10 15 20 

X2 pH 3 5 7 

X3 Time (Hours) 2 3 4 

 

 
Fig. 1: UV Chamber for Effluent Treatment (1) UV Light, (2) 

Beaker (3) Magnetic stirrer (4) Switch controls (5) wooden box 

(6) Exhaust arrangement. 

 

As shown equation [7]. The initial absorbance of dye before 

Decolorization treatment  and the final absorbance of dye 

after treatment were measured at λmax of 597 nm [24]. 

𝐷𝑒𝑐𝑜𝑙𝑜𝑢𝑟𝑖𝑠𝑎𝑡𝑖𝑜𝑛 (%) =  
𝐼0 − 𝐹𝑡
𝐼0

× 100 [7] 

 

FT-IR analysis 

Degradation of dye with respect to pH was studied 

using Fourier-transforms infrared analysis. FT-IR was studied 

between 650 – 4000 cm-1
 with 32 scans per minute and 

resolution of 1 cm-1
 [25]. 

 

Response surface method 

Box and Behnken design of experimental design meant 

for three factors and three levels was used to analyze  

the effect of composite concentration, pH and time on 

Decolorization efficiency. The coded and actual values of 

experiment are shown in Table 2. 

Generic form of second order polynomial equation for 

3 factor design is given by equation [8] (Tayeb, Tony,  

et al., 2018). 

𝛾 =  𝛽0 + ∑𝛽𝑖𝑋𝑖 + ∑𝛽𝑖𝑗𝑋𝑖
2 + ∑∑𝛽𝑖𝑗𝑋𝑖𝑋𝑗 [8] 
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Fig. 2: Representation of a typical ANN structure. 

 

Where 𝛾 being the predicted response (Decolorization %), 

𝛽0, 𝛽𝑖 , 𝛽𝑖𝑖   and 𝛽𝑖𝑗 are the model regression coefficient 

parameter and 𝑋𝑖  is the input controlling code variable. 

Design Expert software (Version 7.0.0) was used to 

analyze the data [26,27].  

 

Artificial Neural Network (ANN) 

ANN develops a model that aids in understanding the 

relation between input and output parameters. It consists 

of Input layer, output layer and hidden layer(s). These 

layers consist of nodes that act as computational elements. 

Experimental design parameters decide the number of 

nodes in input layer and output layer, whereas the nodes in 

hidden layer vary based on network optimization and 

performance. Signals received from previous layers by 

each node are multiplied by weights known as synaptic 

weight. These inputs of synaptic weights are summed up 

and fed as the input to the successive layer using transfer 

function. ANN models were developed and studied using 

EASYNN Software. Mostly Physico-chemical process 

modeling uses back propagation method with feed forward 

neural network [28]. Thus, determination of weights is 

done by training neural network using back propagation 

algorithm. A typical network structure is shown in Figure 

2, which shows input layers (X1, X2, X3 and X4), hidden 

layers and output layer. Input vector with the help of 

random weights is used by the network to produce output 

vector, compares the predicted output with the desired 

output vector and thus calculates the error vector. 

The error vector is calculated using equation [9] where, 

E denotes Error vector, T is the target output vector, 𝑂𝑢𝑡𝑖  is 

predicted output vector and n denotes training patterns [29]. 

𝐸 =
1

2
 ∑(𝑇𝑖 − 𝑂𝑢𝑡𝑖)

2

𝑛

𝑖=1

 [9] 

Backward propagation algorithm propagates the error 

signal and synaptic weights are adjusted to achieve 

minimum possible error for the particular network 

parameter combinations. Changing of weights for input-

output pair after the presentation is given by equation [10]. 

∆𝑊𝑖𝑗 =  𝜂 [
𝛿𝐸

𝛿𝑊𝑖𝑗
] [10] 

Where ∆𝑊𝑖𝑗 denotes the correction applied to synaptic 

weights 𝑊𝑖𝑗 that connects the 𝑖𝑡ℎ node present in the 

hidden layer and 𝑗𝑡ℎ output node. Learning rate is denoted 

by 𝜂 and is a constant. Sigmoid transfer functions has been 

used in this network [29]. 

 

Optimization of ANN parameters 

Prediction performance of network is highly influenced 

by the selection and optimization of parameters used for the 

study. The present study uses four input parameters 

namely, composite concentration (X1), pH (X2), treatment 

time (X3) and composite proportions (X4). The independent 

network was trained to predict the Decolorization 

percentage of RB5 effluents. In order to predict the 

Decolorization percentage of RB5, one hidden layer with 

five nodes were used, as one hidden layer itself was capable 

of handling nonlinearity. Adaptive learning and momentum 

constant are used to predict the performance, as necessary 

parameter changes are controlled by the program itself  

to train the network. Learning rate and momentum constant 

were optimized at 1 and 0.8 respectively. Training  

was stopped at 769 iterations for Decolorization efficiency 

percentage. The dataset used in ANN training were divided 

into two subsets in which 86.66 % of data was used to train 

the network and 13.33% of data was used for validation. 

The mean square error (MSE) and mean absolute error 

percentage (MAEP) used in ANN prediction is given by 

equation [11] and [12] respectively. 

𝑀𝑆𝐸 =  
1

𝑛
∑( 𝑌𝑒 − 𝑌𝑝)

2

𝑛

𝑖=1

 [11] 

𝑀𝐴𝐸𝑃 =  
1

𝑛
∑
|(𝑌𝑒 − 𝑌𝑝)|

𝑌𝑒
 ×  100

𝑛

𝑖=1

 [12] 

Where, 𝑌𝑒 is the experimental values, 𝑌𝑝 is the predicted 

values obtained from ANN and n is the number of 

experiences. MSE determines the relation between the 

hidden layer neurons and network error or ANN model [28]. 
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Table 3: Experimental and predicted values of composite on RB5. 

S.No Composite concentration (g/L) pH Time (Hour) Composite Proportion 
Decolorization Efficiency (%) 

Experimental Predicted by ANN 

1 10 3 3 1 72.35 (0.57) 72.24 

2 20 3 3 1 93.54 (0.68) 92.70 

3 10 7 3 1 64.43 (1.53) 64.55 

4 20 7 3 1 87.10 (1.03) 87.15 

5 10 5 2 1 58.52 (1.12) 59.73 

6 20 5 2 1 76.34 (0.69) 76.66 

7 10 5 4 1 73.39 (0.68) 73.78 

8 20 5 4 1 93.87 (0.19) 93.35 

9 15 3 2 1 69.67 (0.62) 69.85 

10 15 7 2 1 63.66 (0.60) 61.24 

11 15 3 4 1 86.28 (1.43) 86.51 

12 15 7 4 1 81.80 (1.74) 81.89 

13 15 5 3 1 69.67 (0.47) 69.73 

14 15 5 3 1 70.82 (0.84) 69.73 

15 15 5 3 1 68.47 (0.69) 69.73 

16 10 3 3 2 71.09 (1.27) 70.66 

17 20 3 3 2 88.85 (1.13) 89.24 

18 10 7 3 2 67.07 (0.45) 66.99 

19 20 7 3 2 85.68 (0.40) 85.50 

20 10 5 2 2 58.91 (1.58) 60.55 

21 20 5 2 2 76.83 (1.52) 76.76 

22 10 5 4 2 74.48 (1.50) 74.36 

23 20 5 4 2 93.26 (0.57) 92.83 

24 15 3 2 2 69.84 (1.02) 68.65 

25 15 7 2 2 63.82 (1.04) 63.87 

26 15 3 4 2 83.17 (0.63) 83.03 

27 15 7 4 2 79.29 (0.64) 79.66 

28 15 5 3 2 74.75 (1.10) 74.09 

29 15 5 3 2 73.82 (1.33) 74.09 

30 15 5 3 2 73.71 (0.72) 74.09 

*Values in parentheses indicate CV% 

 

Table 4: Regression equation of KCT composites on RB5. 

Composite Equation R2 

1:1:1 KCT 𝑦 =  +69.18 + 10.27 𝑋1 − 3.11 𝑋2 + 8.39 𝑋3 + 5.18 𝑋1
2 + 5.0 𝑋2

2  + 1.17 𝑋3
2 + 0.37 𝑋1𝑋2 + 0.67 𝑋1𝑋3 + 0.38 𝑋2𝑋3 0.993 

1:1:2 KCT 𝑦 = +73.06 + 9.13 𝑋1 − 2.14 𝑋2 + 7.60 𝑋3 + 3.48 𝑋1
2 + 1.64 𝑋2

2 − 0.67 𝑋3
2 + 0.21 𝑋1𝑋2 + 0.21 𝑋1𝑋3 + 0.53 𝑋2𝑋3  0.990 

 

RESULTS AND DISCUSSION 

Statistical analysis - Response surface methodology 

Decolorization efficiency using 1:1:1 and 1:1:2 KCT 

composite on RB5 obtained by experimental results and 

predicted results by ANN are given in Table 3. Table 4 

shows the regression equation and coefficient of 

determination for Decolorization efficiency of effluents. 

The p value of 1:1:1 and 1:1:2 KCT composite is less than 

0.0001 and thus the result is significant. The p value 

of 1:1:1 KCT composite for the factors composite concentration,
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Fig. 3: Response surface of UV-photolysis of 1:1:1 KCT composite Decolorization efficiency. 

 

         
Fig. 4: Response surface of UV-photolysis of 1:1:2 KCT composite Decolorization efficiency. 

 

pH and time of treatment is less than 0.0001, 0.0002 and 

0.0001 respectively.  

Similarly, the p value of KCT composite for the factors 

composite concentration, pH and time of treatment is less 

than 0.0001, 0.0021 and 0.0001 respectively. Both the 

composite p value is less than 0.05 thus the result is 

significant. The high values for the coefficient of 

determination of 1:1:1 KCT composite (R2 = 0.993) and 

1:1:2 KCT composite (R2 = 0.990) suggests a good fit of 

the model with the experimental data. The 3D response 

surface of the performance variables composite 

concentration, pH and time for 1:1:1 and 1:1:2 KCT 

composite on Decolorization of RB5 effluents is presented 

in Figure 3 (a) - (c) and Figure 4 (a) - (c,) respectively. 

Response surface models confirm significant 

interaction of performance variables on Decolorization of 

RB5. It can be seen from Figure 3 and 4, that both the 

composite follows similar trend irrespective of proportion 

due to formation of similar phases. Increase in composite 

concentration shows an increasing trend and increase in 

pH shows a decreasing trend on Decolorization percentage 

of RB5 as shown in Figures 3 and 4 (a). Time of treatment 

responds linearly with respect to pH and composite as 

shown in Fig 3 and 4 (b-c). The maximum composite 

efficiency is found at pH 3 with maximum time of 4 hours 

of treatment.  

These interactive studies were used to determine the 

optimum condition with the help of Design Expert 

software and the optimum conditions for 1:1:1 and 1:1:2 

KCT composite is presented in Table 5. The dye effluent 

treated using 1:1:1 and 1:1:2 KCT composite under 

optimized condition results in 94.42 % and 93.93 %  

Decolorization efficiency respectively and is shown  

in Fig. 5. The statistically predicted Decolorization 

efficiency is well in agreement with the experimental 

results performed using optimized conditions.  

 

Dye degradation – FT-IR analysis 

FT-IR spectra of Reactive Black 5, its residues after 

treatment of effluents using 1:1:1 KCT composites treated 

at pH 3, 5 and 7 are shown in Figure 6. FT-IR spectra of 

original dye sample exhibited the peaks at 3450 cm-1, 2968 

– 2888 cm-1, 1640 cm-1, 1400 – 1580 cm-1 and 1078 – 1256 

cm-1 accountable for the presence of –NH, CH2, C=N,  
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Table 5: Optimum treatment conditions for KCT composite with predicted and achieved Decolorization efficiency. 

Response variables 
Optimum conditions 

1:1:1 KCT Composite 1:1:2 KCT Composite 

Composite Concentration (g/L) 18.4 19.8 

pH 3.3 3.6 

Time (Hours) 4 4 

Decolorization efficiency (%) – Predicted 94.20 93.65 

Decolorization efficiency (%) – Achieved 94.42 93.93 

 

Table 6: Prediction performance summary 

Statistical Performance 

Decolorization Efficiency 

Prediction by Statistical Model Prediction by ANN Model 

Equation 1 Equation 2 Prediction by Training data-set Prediction by Testing data-set 

Correlation coefficient 0.997 0.997 0.99 0.97 

MAEP (%) 0.0094 0.0069 0.0074 0.0062 

MSE 0.657 0.405 0.59 0.4 

 

 
Fig. 5: Decolorization efficiency of RB5 under optimized condition 

 

N=N and O-C stretches [30].  After the treatment  of 

effluents with KCT composites, significant changes in the 

peaks were observed – (i) absence of peaks around 1400 – 

1580 cm-1, indicating removal of N=N group, responsible 

for colour of the effluent (chromophore of the dye 

molecule), (ii) reduction / completely disappearance of  

–NH stretch (3000 – 3718 cm-1 ) and (iii) reduction of 

peaks in 650 – 2000 cm-1 region and formation of new 

peaks indicating C=O stretch at 1640 cm-1 , -CH2 stretch 

at 1400 cm-1 and C-H stretch at 710 - 984 cm-1 [31]. 

 

Artificial Neural Network 

Experimental results of Decolorization percentage using 

various combinations were used to train ANN (Table 2). 

Among 30 data-sets, 26 data-sets were used for training the 

 
Fig. 6: FT-IR spectra of Reactive Black 5 and its residues after 

treatment. 

 

network, and 4 data-sets were used for validation of the 

model. ANN training were stopped and optimized based 

on the minimum possible MSE achieved. The difference 

between the experimental values and the predicted values 

were used to calculate the absolute error percentage. Table 

6 shows the prediction performance summary of statistical 

and ANN models.  

The correlation coefficient is more than 0.99 for training 

data set and 0.97 for testing data. The correlation coefficient 

of statistical model is 0.997 for both the equations. 

 

CONCLUSIONS 

The composite concentration, pH and time of 

treatment were found to have significant effect on 
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Decolorization of RB5. Increase in composite 

concentration and time increases the Decolorization 

efficiency, while lower pH values increase the 

Decolorization efficiency. Based on the optimization 

conditions, about 94.42% and 93.93 % of Decolorization 

efficiency was achieved for 1:1:1 and 1:1:2 KCT 

composite, respectively. In ANN model number of 

hidden layers, number of hidden nodes in each hidden 

layer, number of iterations, momentum constant and 

learning rate were optimized to predict Decolorization 

efficiency. Experimental values and ANN predicted 

values were compared and the prediction performance 

was assessed by mean square error, mean absolute 

percentage error and correlation coefficient, which 

showed marginally better prediction performance in the 

case of ANN model than statistical model in terms of 

mean square error and correlation coefficient.  
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