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ABSTRACT: In this research the experimental and theoretical studies on different Enhanced Oil 

Recovery (EOR) techniques, i.e. Water Flooding (WF), Gas Injection (GI) and Water Alternating 

Gas process (WAG) were performed on specimens taken from an Iranian carbonate offshore 

reservoir at the reservoir condition. The experimental results for each specified techniques were 

compared with the corresponding results obtained from a simulation model. In the case of WF and 

GI, the injection rates were set to be 0.1, 0.2 and 0.5 cc/min while for the WAG experiments, with 

two WAG ratios 1 and 2 and with 7, 7, and 10 cycles, the injection rates were 0.1, 0.2 and 0.5 

cc/min. The results obtained from the experiments revealed that in all cases the amount of 

recovered oil is increased. Furthermore, the results showed that increase in the recovery of oil is 

significant in the case of the WAG injection with optimum rate of injection fluids comparing to those 

of the WF and GI scenarios. It was also pronounced that the recovery of oil with WAG ratio 2 is 

more than that with ratio 1. It should be mentioned that samples for sea water and pure methane 

were considered to be as injection fluids. It was also shown that the experimental results can be 

accurately correlated with a black oil numerical simulator, Eclipse100. 
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INTRODUCTION 

After primary and secondary recovery such as Water 

Flooding (WF) and Gas Injection (GI) millions of barrels 

of oil still remains in trapped form in the reservoirs. 

Water   Alternating  Gas  (WAG)  injection  as  a  tertiary  

 

 

 

recovery method is one of the Enhanced Oil Recovery 

(EOR) methods which have recently received a great deal 

of attention. The first WAG implementations were 

reported  in  1957  in  Canada,  the  United  States and the  
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Fig. 1: Schematic diagram for the core flooding apparatus used in the experiments. 

 

North Sea [1]. The WAG process can be implemented in 

both onshore and offshore reservoirs with hydrocarbon or 

non-hydrocarbon gases as injection fluids. It has been 

shown that implementation of the WAG process can lead 

to an increase in oil recovery ranging from 5 to10 percent 

of the Initial Oil in Place (IOIP) [2]. Also using the WAG 

process the well-known shortcoming of the conventional 

WF and GI processes, i.e., gas fingering and mobility 

ratio problems can be overcome and, in turn, result in a 

stable and uniform frontal displacement. As reported 

before, the WAG injection has an intrinsic potential to 

increase the macroscopic efficiency in immiscible oil 

displacement as well as the microscopic efficiency in 

miscible oil displacement. So far several types of the 

WAG processes have been used such as Miscible WAG 

(MWAG) [3-7], Immiscible WAG (IWAG) [8-9], Hybrid 

WAG (HWAG) [10-14], Simultaneous WAG (SWAG) 

[15-18], Foam WAG (FAWAG) and Water Alternating 

Steam Process (WASP) [19]. In the field scales the WAG 

process has been used in sandstone reservoirs to a large 

extent but rarely in the carbonate reservoirs [2]. It would 

be worth noting that the offshore reservoirs could be a 

good candidate for the implementation of the WAG 

process due to the availability of sea water. In Iran there 

are a number offshore reservoirs, which can be considered 

as appropriate candidates for the implementation of the 

WAG technique for tertiary recovery in field scale. In this 

research the WF, GI and WAG processes were studied on 

core samples taken from an Iranian offshore reservoir at 

reservoir conditions. The effect of parameters on the 

amount of oil recovered such as the rate of injection of 

fluids optimum ratio and cycle for in the case of the 

WAG experiments were studied. 

 

EXPERIMENTAL 

Apparatus 

In order to carry out the core flooding experiments  

a high-pressure core flooding apparatus was used. A 

schematic diagram of the core flooding system along with 

its ancillaries, obtained from Eksir Daroo Manufacturing 

Company, is shown in Fig. 1. This apparatus consists of; 

an accurate high temperature controlled air bath with  

accuracy of ± 0.1 °C, a digital pressure measuring device 

(Heise model 901 A) with accuracy of ± 0.5 bar, a core 

holder, and a computer controlled high-pressure positive 

displacement pump with a volume resolution of 0.01 cc 

for pressurization. An Enerpac manual pump rated up to 

815 bars to supply the overburden pressure around the 

core plug shielding by a lead sleeve was also available for 

use. Three sample cylinders with a volume of 500 cc each 

and maximum allowance pressure of 1020 bars to inject 

both live oil and injection fluids were also used. As 

shown in Fig. 1 a Back Pressure Regulator (BPR) system 

was used to maintain the pressure at the outlet of the core 
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Table 1: Physical properties of core samples used in the experiments. 
 

Core sample Average porosity (%) Average  Ka (md) Average Swi (%) Rock type Core length (cm) Core diameter (cm) 

S1,  S2,  S3 12.5 8.0 0.20 Carbonate 31.5 3.8 

 

holder at the desired value. Also a glassware separator 

was used in order to separate and measure the volume of 

the oil and gas recovered during the flooding 

experiments. A wet gas meter at barometric condition 

was used to measure the volume of the gas. The 

experiments were carried out with different flow rate of 

injection fluids at constant pressure, and the corresponding 

volumes of the hydrocarbons recovered during the 

experiments were measured. The experiments at each 

specified rate were repeated three times and the results 

were presented as the average of the experiments. 

 

Samples 

Live oil samples at reservoir pressure and at ambient 

temperature were supplied from one of the offshore 

reservoir in the south of Iran. In order to prepare the live 

oil sample, specified amount, of oil and gas at surface 

conditions were obtained and recombined according to 

the values for the Gas Oil Ratio (GOR) reported for the 

reservoir. Rock samples were obtained from the main 

outcrop of the reservoir and the core plugs were cut out in 

laboratory from the rock samples. As expounded the live 

fluid used in each scenario was prepared with 

recombination of oil and gas sample from the field 

separator with GOR of 330 Rcf/Rbbl at reservoir 

conditions. 

 

Modeling 

Analytical solutions to reservoir flow equations are 

only attainable after making assumptions with regard  

to the geometry, properties and boundary conditions  

that severely restrict the applicability of the solutions.  

For most real reservoir fluid flow problems, such 

simplifications are not valid. Therefore, we need to solve 

the equations numerically. Eclipse 100 is a numerical 

simulator utilizing standard finite difference equations.  

It can be used for lab scale modeling. It is a fully implicit, 

3 - phase, and 3-D simulator and can be used to simulate 

one - phase, two - phase or three -phase systems. Two - 

phase options (oil/water, oil/gas, and gas/water) are 

solved as two component systems saving both computer 

storage and CPU time. Radial and Cartesian block-center 

options are available in 1-D, 2-D or 3-D. A 3-D radial 

option completes the circle allowing flow to take place 

across the 0/360 degree interface. Considering the fluid 

phases of oil, gas and water only, and substituting Darcy's 

equations and standard black oil fluid descriptions into 

the continuity equations, and the inclusion of the 

production / injection terms in the equations, will result in 

the flow equations for the three - phase. Both drainage 

and imbibition curves may be required in simulation  

of oil/gas/water systems, depending on the process 

considered. First, the core must be subdivided into a 

number of discrete grid blocks, and the time coordinate 

must be divided into discrete time steps. Then, the 

pressure in each block can be solved numerically for each 

time step.  

The model used for this research is 3-dimensional 

with three - phase flowing and with single porosity in 

horizontal radial lab scale. All core samples and fluid 

properties used in the model are attributed to SIRRI-D, an 

Iranian offshore reservoir. Two wells inserted into the 

model, one well for production and one well alternatively 

used for gas and water injection. The production well 

control or outlet pressure from core was fixed based on 

reservoir pressure. The reservoir temperature was applied 

in the model. The lab scale laboratory data modeled for 

water flooding, gas flooding and WAG processes consisted 

of reservoir fluid modeling, lab modeling, and simulation 

of laboratory data at the lab scale. Eclipse 100 was used 

for above steps. Hereby the results are explained. 

 

Reservoir Fluid Modeling 

In reservoir fluid modeling, the reservoir fluid 

properties of Iranian off-shore field are used as shown in 

table 1. To study the phase behavior of the reservoir fluid 

the Peng Robinson EOS equation with 3 parameters 

along with the Lohrenz-Bray-Clark correction were used. 

Results of modeling were compared with the laboratory 

data. At temperature 370.3722 K the calculated bubble 

point pressure was 1561 pisa and the observed bubble 

point pressure 1560 psia. 
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Table 2: Physical properties of recombined oil, water and gas 

sample at reservoir conditions used in the experiments. 

207 oF 
 

Reservoir temp. 

325-380 SCF/STB Gas solution in oil (RS) 

1.2686 Res Vol./ Std Vol. Oil volume factor�(BO) 

1545 Psig Bubble point pressure 

1.8 Cp Fluid viscosity @ Res. cond. 

0.7786 Gr/cc Oil density @ Res. cond. 

0.00127 Gr/cc Gas density @ Res. cond. 

0.9 Cp Water viscosity @ Res. cond. 

1.013 Res Vol./ Std Vol. Water volume factor�(BW) 

31.5  API 

* Reservoir conditions:Temperature=207 oF,  

Pressure=4200 psia. 

 

 

 

 

 

 

 

 

 

Fig. 2: Schematic figure for cylindrical core divided to 100 

sections in Z direction. 

 

Lab scale modeling 

In lab scale modeling, cylindrical core divided to 100 

cylindrical sections with dimension of 1×360×100 

respectively for R, � and Z are shown in Fig. 2. Single 

porosity was considered in all the cases mentioned above. 

 

RESULTS  AND  DISCUSSION 

Tables 1 and 2 show, respectively, the physical 

properties of core samples and recombined reservoir 

fluid, water and gas samples at reservoir conditions. 

Table 1 shows the three samples of the core, S1, S2 and 

S3 with the same physical properties that were used 

during the experiments. Notably, the core samples were 

prepared according to the dimensions of the core flooding 

systems. A careful study of table 2 reveals that API for 

the oil sample is high enough to consider it as a light oil. 

As explained earlier to prepare the recombined and live 

oil sample, specified amounts of oil and gas at surface 

conditions were obtained and recombined based on the 

knowledge of the GOR values reported for the candidate 

offshore reservoir. The properties of the oil, water and 

gas are shown in table 2. These properties were measured 

at reservoir conditions. 

Table 3 represents the analysis for the reservoir fluid 

composition, molecular weight and specific gravity of the 

hexane plus fraction. Tables 4 and 5, respectively, show 

the WAG process cycles for various injection rates at 

WAG ratio 1 and WAG ratio 2. The values reported in 

tables 4 and 5 were directly used in the modeling of the 

experimental results. 

Table 6 shows the reservoir fluid properties of 

different phases. Theses properties are significant in both 

experimental and simulation studies. 

Table 7 presents the experimental results of various 

EOR techniques obtained at different injection rates at  

1.2 P.V injected. As can be seen the oil recovery factor 

obtained after implementation of different EOR technique 

changes with time. Also in table 7 the whole experimental 

results obtained from all scenarios can be compared at the 

same time. As shown in table 7 the maximum experi-

mental oil recovery factor for injection rate of 0.1 cc/min 

and 1.2 P.V injected is attained using the WAG technique 

with WAG ratio 1 and 2. As mentioned before the 

uniform and stable frontal displacement can be obtained 

using the WAG process. The oil recovery factor using 

WAG technique with WAG ratio 2 is more than that in 

WAG ratio 1. As seen in Table 7 the maximum oil 

recovery factor for injection rate of 0.2 and 0.5 cc/min at 

1.2 P.V injected is achieved using the WAG technique 

with WAG ratio 2. As shown the minimum oil recovery 

with all injection rates is observed using the gas flooding 

on the lab scale. 

Figs. 3 to 14 show variations of the oil recovered, gas 

produced, water produced and oil recovery factors verses 

time obtained after implementation of the various EOR 

process, i.e., the WF, GI and the WAG on the lab scale. It 

would be worth noting that the rate of injection for each 

scenario was set to be 0.1, 0.2 and 0.5 cc/min, 

respectively.  As can be seen from these figures the 

percentage of oil recovery increases with time. The 

results shown in Figs. 3 to 14 confirm that the WAG ratio 

set to 2 for all injection rates is optimal in producing 

highest percentage of oil recovery factor in WAG 

process. This can be justified by the fact that alternating 

use of gas and water as major injecting fluids can lead to 

a   decrease   in   gas    fingering    phenomenon   and    to 



Iran. J. Chem. Chem. Eng. Experimental Study and Simulation … Vol. 27, No.2, 2008 

 

85 

Table 3: The reservoir fluid composition analysis. 
 

Component Mole per cent 

Methane 23.45 

Carbon Dioxide 2.05 

Ethane 7.26 

Propane 8.02 

Iso Butane 1.92 

Normal Butane 3.99 

Iso Pentane 1.85 

Normal Pentane 2.57 

Hexane Plus 48.89 

Total 100.00 

 

Table 4: WAG process Cycles for various injection rate and 

WAG Ratio=1. 

 

Injected fluid 

rate, (cc/ min) 

For each cycle- WAG ratio=1.0 
Number 

of cycles Water injection 

length, (min) 
Gas injection 

length, (min) 

0.1 60 60 7 

0.2 30 30 7 

0.5 15 15 10 

 

Table 5: WAG process Cycles for various injection rate and 

WAG Ratio=2. 

 

Injected fluid 

rate, (cc/ min) 

For each cycle- WAG ratio=2.0 
Number 

of cycles Water injection 

length, (min) 
Gas injection 

length, (min) 

0.1 80 40 7 

0.2 40 20 7 

0.5 20 10 10 

 

Table 6: the reservoir fluid properties of different phases. 
 

Fluid properties Liquid Vapor 

Mole weight (g) 172.0104 22.4649 

Z-factor 0.7936 0.8579 

Viscosity (cp) 0.9684 0.0157 

Density (g/cc) 0.7575 0.0915 

Molar volume (cm3/g.M) 227.0734 245.4817 

approaching of the mobility ratio to unity in order to get 

the uniform and stable frontal displacement.  In the case 

that the injection rate is considered to be 0.2 and 0.5 

cc/min higher recovery factors can be obtained by 

implementation of the WF process compared to WAG 

ratio equal 1. Such observation can be plausibly 

explained that the higher injection rate of water can result 

in the bigger slug size of injection and thus, in turn, lead 

to increase the oil recovery. It should be stressed that 

higher injection rate of water cannot be tolerated in the 

field scale due the tremendous operation costs. As shown 

in table 7 the maximum percentage of oil recovery factor 

is attained using optimum injection volume, injection rate 

and WAG ratio by implementing the WAG scenario. 

Also table 8 compares the results obtained from the 

experiments with those obtained from the simulation 

using the simulator. As can be observed from table 7 

although the simulator slightly overestimates the 

experimental results, to a reasonable approximation, it is 

concluded that good agreement can be attained between 

the results of the simulator and those of the experiments. 

Table 9 shows standard deviation of both experi-

mental and simulation results for the amount of oil 

recovered after implementation of the various EOR 

techniques at different injection rates. As seen from Table 

9 good agreement can be obtained using ECLIPSE 100 

between the results of the simulator and those of the 

experiments. 

 

CONCLUSIONS 

The different EOR scenarios were both theoretically 

and experimentally studied on a lab scale for an Iranian 

offshore reservoir. The results showed that implemen-

tation of the WAG process with optimal injection 

volume, optimum rate of injection fluids and optimum 

WAG ratio can lead to a higher oil recovery comparing to 

the other alternating scenarios. It should be stressed that 

all the experiments were carried out at the same physical 

conditions and the same injection rates. The experiments 

were repeated three times and the results are the average 

of experimental data. It is also concluded that at very high 

injection rates the maximum recovery can be observed 

using the WF process while at moderate as well as 

operational injection rates the maximum recovery of oil  

is obtained by implementing the WAG process. The 

experimental  results  were  compared   with   the   results 
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Table 7: Experimental results for the amount of oil recovery factor after implementation of the various EOR techniques  

at 1.2 P.V injected and different injection rates. 

 

Laboratory oil recovery % @ 1.2 P.V injected Rate = 0.1 (cc/min) Rate = 0.2 (cc/min) Rate = 0.5 (cc/min) 

Gas flooding 44.65 45.18 45.00 

Water flooding 51.63 53.12 54.57 

WAG injection- Ratio=1 53.16 52.13 53.90 

WAG injection- Ratio=2 54.34 54.98 56.61 

Simulation oil recovery % @ 1.2 P.V injected Rate = 0.1 (cc/min) Rate = 0.2 (cc/min) Rate = 0.5 (cc/min) 

Gas flooding 46.63 47.85 48.15 

Water flooding 53.82 54.95 57.33 

WAG injection- Ratio=1 48.03 47.92 49.02 

WAG injection- Ratio=2 50.31 49.45 50.57 

* Laboratory condition: Injection pressure = 4200 psig, Air bath temperature = 215 o F. 

 

Table 8: Standard deviation of experimental results for the 

amount of oil recovery factor after implementation of the 

various EOR techniques and different injection rates. 
 

Scenario injection 

rate (cc/min) 
WF 

WAG  

ratio=1 
WAG  

ratio=2 
GI 

0.1 16.274 13.182 13.795 14.101 

0.2 16.894 14.077 14.870 11.505 

0.5 14.552 11.932 12.743 13.164 

 

obtained from the simulator. It was concluded that good 

agreement exists between the results of the simulation 

and those of experiments. 
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Nomenclatures 

M                                                                   Mobility ratio 

Table 9: Standard deviation of simulation results for the 

amount of oil recovery factor after implementation of the 

various EOR techniques and different injection rates. 
 

Scenario injection 

rate (cc/min) 
WF 

WAG  

ratio=1 
WAG  

ratio=2 
GI 

0.1 12.765 3.25771 6.641 14.031 

0.2 12.682 2.772 5.124 16.363 

0.5 5.485 1.252 16.9 13.650 

 

R                                                                      Oil recovery 

Ev                                               Vertical sweep efficiency 

Eh                                           Horizontal sweep efficiency 

Em                            Microscopic displacement efficiency 

kro                                                Oil relative permeability 

krg                                               Gas relative permeability 

µo                                                                    Oil viscosity  

µg                                                                   Gas viscosity 
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Fig. 3: Variation of the experimental amount of oil recovered 

after implementation of all scenarios respectively at injection 

rate of 0.1, 0.2, and 0.5 cc.min-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Variation of the experimental amount of oil recovered 

after implementation of all scenarios respectively at injection 

rate of 0.1, 0.2, and 0.5 cc.min-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Variation of the experimental amount of oil recovered 

after implementation of all scenarios respectively at injection 

rate of 0.1, 0.2, and 0.5 cc.min-1. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Variation of the experimental amount of gas produced 

after implementation of all scenarios respectively at injection 

rate of 0.1, 0.2, and 0.5 cc.min-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: Variation of the experimental amount of gas produced 

after implementation of all scenarios respectively at injection 

rate of 0.1, 0.2, and 0.5 cc.min-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8: Variation of the experimental amount of gas produced 

after implementation of all scenarios respectively at injection 

rate of 0.1, 0.2, and 0.5 cc.min-1. 

Time (min) 
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Fig. 9: Variation of the experimental amount of water 

produced after implementation of all scenarios respectively at 

injection rate of 0.1, 0.2, and 0.5 cc.min-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10: Variation of the experimental amount of water 

produced after implementation of all scenarios respectively at 

injection rate of 0.1, 0.2, and 0.5 cc.min-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11: Variation of the experimental amount of water 

produced after implementation of all scenarios respectively at 

injection rate of 0.1, 0.2, and 0.5 cc.min-1. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12: Variation of the experimental amount of oil recovery 

factor after implementation of all scenarios respectively at 

injection rate of 0.1, 0.2, and 0.5 cc.min-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13: Variation of the experimental amount of oil recovery 

factor after implementation of all scenarios respectively at 

injection rate of 0.1, 0.2, and 0.5 cc.min-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14: Variation of the experimental amount of oil recovery 

factor after implementation of all scenarios respectively at 

injection rate of 0.1, 0.2, and 0.5 cc.min-1. 
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Fig. 15: Variation of the Simulation amount of oil recovery 

factor after implementation of all scenarios respectively at 

injection rate of 0.1, 0.2, and 0.5 cc.min-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16: Variation of the Simulation amount of oil recovery 

factor after implementation of all scenarios respectively at 

injection rate of 0.1, 0.2, and 0.5 cc.min-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17: Variation of the Simulation amount of oil recovery 

factor after implementation of all scenarios respectively at 

injection rate of 0.1, 0.2, and 0.5 cc.min-1. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18: Variation of the Simulation amount of water 

produced after implementation of all scenarios respectively at 

injection rate of 0.1, 0.2, and 0.5 cc.min-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19: Variation of the experimental amount of water 

produced after implementation of all scenarios respectively at 

injection rate of 0.1, 0.2, and 0.5 cc.min-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20: Variation of the Simulation amount of water 

produced after implementation of all scenarios respectively at 

injection rate of 0.1, 0.2, and 0.5 cc.min-1. 
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Fig. 21: Variation of the Simulation amount of gas produced 

after implementation of all scenarios respectively at injection 

rate of 0.1, 0.2, and 0.5 cc.min-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 22: Variation of the Simulation amount of gas produced 

after implementation of all scenarios respectively at injection 

rate of 0.1, 0.2, and 0.5 cc.min-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 23: Variation of the Simulation amount of gas produced 

after implementation of all scenarios respectively at injection 

rate of 0.1, 0.2, and 0.5 cc.min-1. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 24: Variation of the amount of relative volume after 

implementation of the model constructed based on PR EOS 

equation �:  Experimental data;   : results from model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 25: Variation of the amount of liquid density after 

implementation of the model constructed based on PR EOS 

equation �: Experimental data;  : results from model. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 26: Variation of the amount of gas density after 

implementation of the model constructed based on PR EOS 

equation   �: Experimental data;   : results from model. 
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