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ABSTRACT: The present investigation entails a procedure by which the surface tension and 

viscosity of liquids could be predicted. To this end, capillary experiments were performed for porous 

media by utilizing fifteen different liquids and powders. The time of capillary rise to a certain known 

height of each liquid in a particular powder was recorded. Two artificial neural networks (ANNs) 

were designed and used to separately predict the surface tension and the viscosity of each liquid 

respectively. The surface tension predictor network had six inputs, namely: particle size, bulk density, 

packing density and surface free energy of the powders as well as the density of the probe liquids 

together with the capillary rise time of the liquids in the corresponding powders. The viscosity 

predictor network had surface tension as an extra input. In order to correlate the surface tension 

and viscosity as predicted by the corresponding artificial neural network to their experimentally 

determined equivalents, two different statistical parameters namely the product moment correlation 

coefficient (r2) and the performance factor (PF/3) were used. It must be noted that for a perfect 

correlation r2 = 1 and PF/3 = 0. The results of the present work clearly showed that the artificial 

neural network approach is able to predict the surface tension (i.e. r2 = 0.95, PF/3 = 16) and 

viscosity (i.e.  r2 = 0.998 , PF/3 = 13) of the probe liquids with unsurpassed accuracy. 
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INTRODUCTION 

Thermodynamic and transport properties of liquids 

are fundamental in processes involving liquid flow and 

heat and mass transfer. Two most important of these 

properties are surface tension and viscosity. Surface 

tension of a liquid characterizes the free energy per unit 

area required for the formation of a liquid-air interface  

at constant temperature, pressure, and composition. 

Viscosity of a liquid, on the other hand, characterizes its 

resistance to flow. Due to the vast number of chemicals in 

active use, and the lack of experimentally determined 

data for surface tension and viscosity there is an intensive 

and growing need for reliable and easily carried out 

procedures to provide such required data. The present 

study is an attempt to provide one such procedure. 

Many approaches for determining the surface tension 

and the viscosity of liquids have been proposed [1-6]. 

One method, is the capillary rise procedure. The 

theoretical background of this procedure is as follows: 

The first approach to analyse imbibition was reported 

by Bell et al. [7] who found a square root dependency of 

time on the height of imbibition. In 1921, Washburn [8] 

derived the time dependency of the height rise of a liquid 

into a single, straight line capillary of radius r. The 

derivation of this equation was based on Eq. (1). The 

capillary pressure causing the wetting phenomenon may 

be related to the liquid surface tension (γlv) and the 

contact angle (θ) by what is known as the Laplace’s 

equation : 

r

coslv2

cP
θγ

=∆                                                          (1) 

where ∆Pc  is the capillary pressure and r is the 

capillary radius. The Washburn’s equation (Eq. (2)) was 

then derived by equating the capillary pressure to the 

pressure loss due to internal friction (Hagan-Poiseuille’s  

equation [9]): 

t
2

cosr
h lv2

η

θγ
=                                                             (2) 

where h is the height to which the liquid has risen, η 

is the liquid viscosity and t is the time of capillary rise. In 

1918, Lucas [10] independently derived the same 

equation. 

Measurement  of  the   viscosity   of   liquids   by   the 

 

 

 

 

 

 

 

 

Fig. 1: The  neuron  model. 

 

capillary rise procedure, was first proposed by Levitt [11]. 

Levitt determined the viscosity of liquids using  the half-

time of rise in a fine vertical capillary. Using this method 

viscosity of water, methanol, ethanol, benzene, acetone, 

and chloroform were measured at room temperature  

using marine barometer tubing. In 1998, Rye et al. [12] 

suggested an open capillary technique for simple 

measurement of the surface tension and the viscosity 

individually, as well as a ratio of the two. By this method 

viscosity and surface tension of 1,4-butanediol, cyclo-

hexanol, 1-butanol, 2-octanol, diethylene glycol, 1-heptanol 

were calculated and compared with the literature values. 

In the present work, the performance of designed ANNs 

for the prediction of the surface tension and the viscosity 

of liquids using  time of capillary rise to a certain height 

in porous media were put to test. 

An artificial neural network (ANN) can be considered 

as a black box consisting of a series of  complicated 

equations for the calculation of outputs based on a given 

series of input values. Therefore, the task of the network 

is to perform a set of mappings between its inputs and 

outputs. Neural networks consist of collections of 

connected processing elements or neurons. As shown in 

Fig. 1, the neuron consists of an input p, which is 

multiplied by a weight w, and then is summed by a bias 

b. The product is computed by a mathematical function f 

which determines a neuron output a. This mathematical 

function is called the activation or the transfer function. 

Neural networks are currently being extensively 

applied in many fields of science and engineering  

[13-20]. The major reason for this rapid growth and 

diverse application of neural networks is their ability to 

estimate virtually any function in a stable and efficient 

way. Hence, they create a platform on which different 

models can be constructed. One main problem in 

predicting  surface  tension  and viscosity of liquids is the 

p 

b 

w � a f 

a = f (wp + b) 
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Table 1: Some physical properties and chemical nomenclature of the probe powders. 

Supplier Bulk density (kg/m3) Particle  size ( �m ) Active  component 

 

Powders 

Degussa 50 0.012 Silica Aerosil 200 

Degussa 190 0.025 Carbon black Printex V 

Bayer 1050 0.17 Iron oxide Bayferrox 130 

Kemira 900 0.22 Titanium dioxide Kemira 650 

DuPont 820 0.41 Titanium dioxide Ti-Pure R-900 

Omya Pars 700 1.9 Calcium carbonate Penta Calcium�Carbonate 

Sanaye Poodre Sangsar 500 2.4 Magnesium silicate Super Talk WT-2500 

Sanaye Poodre Sangsar 1060 2.4 Barium sulfate Baryte Ba-2500 

Khorasan Kaoline 440 2.4 Aluminium silicate Kaoline KSP 

Khorasan Kaoline 610 3.8 Aluminium silicate Kaoline KCC 

Boysan 130 5.5 Silica Syloid ED 30 

Sanaye Poodre Sangsar 630 8.3 Magnesium silicate Super Talk WT-1500 

Sanaye Poodre Sangsar 790 15 Magnesium silicate Super Talk WT-800 

Micronized Powder 820 15 Calcium carbonate Milky Calcium�Carbonate-800 

Farayand Powder 620 45 Zinc oxide Zinc Oxide Z-1 

 
fact that the application of an exact theory is 

computationally impracticable, hence only approximate 

estimations could be made. It is expected that a neural 

network approach would offer a helpful and beneficial 

new solution to solve this particular problem. 

 

MATERIALS  AND  METHODS 

Materials 

Imbibition experiments were carried out with porous 

columns made from fifteen packed powders. Physical and 

chemical properties of which are given in Ref. [21] and 

are summarized in table 1. The suppliers of these 

powders are also mentioned in table 1. The powders 

provide a wide range of particle size (i.e. 0.012-45 �m) 

and bulk density (i.e. 50-1600 kg/m3). Some properties of 

the probe liquids used are shown in table 2. Formamide 

was provided by the Roth Company and all the other 

liquids except distilled water were provided by the Merck 

Company. The properties of these liquids were obtained 

from Ref. [22]. The liquids provide a wide range of 

surface tension (i.e. 15.45-71.99 mJ/m2), and viscosity 

(i.e. 0.25-21 mPa.s) and were used as received without 

any further purification. 

Methods 

Capillary  rise  experiments 

Two different approaches for capillary rise 

experiments have been broadly employed: In the first 

approach, the weight increase caused as a consequence of 

the capillary rise in the porous media is evaluated; whilst 

in the second approach, evaluation is made of the length 

advanced by the liquid through the porous media. 

However, Labajos-Broncano et al. [23] proved that the 

measurement of mass or length in the experimental 

procedure give equivalent results and have no effect on 

the final outcome. In this work, the distance-time 

imbibition was employed. 

The apparatus, depicted in Fig. 2, was used for the 

capillary rise experiments and consisted of a reservoir of 

a certain liquid and a graduated vertical cylindrical tube 

supported by a clamp. The cylindrical tube was in fact a 

10-ml volumetric pipette with the bottom tip cut off. 

Glass wool was packed into the bottom of the tube to act 

as a support bed for each powder. The tube was then 

filled with a known mass of a given powder. For each 

powder, the weight and height were always kept constant 

by vibrating the tube to a certain volume fraction, in order 
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Table 2: Some  properties  of  the  probe  liquids. 

Viscosity (mPa.s) Surface tension (mN/m) Density (kg/m3) 
 

Liquids 

21 47.99 1110 Ethane-1,2-diol 

15 31.85 860 2,6,10,15,19,23- Hexamethyltetracosa-2,6,10,14,18,22-hexaene 

3.59 27.05 770 Hexadecane 

3.31 57.03 1130 Formamide 

2.8 66.18 3320 Diiodomethane 

2.2 20.93 800 Propan-2-ol 

1.86 43.45 1200 Nitrobenzene 

1 71.99 1000 Distillated  water 

0.81 23.54 730 Decane 

0.8 32.99 1110 Chlorobenzene 

0.60 22.07 790 Methanol 

0.44 23.39 900 Ethyl acetate 

0.41 24.36 800 Butanal 

0.32 23.46 790 Acetone 

0.25 15.45 630 Pentane 

1412 62.82 1230 Glycerine a 

a) Glycerine  was  only  used  to  determine  the  surface  free  energy  of  Printex  V ( i.e.  Carbon  black  powder )  

 since  the  times  of  capillary  rise  for  the  other  liquids  were  too  small. 
 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2: Schematic representation of the apparatus for the 

capillary rise experiments. 

 

to ensure a constant packing density. Then, the tube was 

lowered into the reservoir and a time of zero was 

recorded when the liquid first touched the powder. For 

each liquid, the penetration time to a known given height 

of powder column was then recorded. Before using the 

tube for the next experiment, the tube was cleaned 

carefully with cleansing solution followed by repeated 

rinsings with distilled water and finally with acetone. The 

tube was then thoroughly dried in an oven. When the tube 

was not in use, it was covered at both ends to prevent the 

smallest traces of dust from entering. All column wicking 

experiments were performed at the temperature of 25 °C. 

The temperature of the system was controlled by a Multi 

Temp III thermostat with a precision of ±0.1 °C. Each 

reported value is the average of three independent 

measurements for liquids for which small standard 

deviations were observed. In the case of liquids where 

large standard deviations were obtained, the reported 

value is the average of five to six measurements. 

In any case, it was ensured with a 95 % confidence 

limit that the standard deviation was always less than 8 % 

of the measured values. 

 
Determination  of  surface  free energy  of the powders 

Since surface free energy of the powders (γsv) plays a 

critical role in analysing the diffusion of  liquids in 

porous media  and its value is usually not provided by the  

Clamp 

Test  powder 

Wetted  

powder 

Glass  wool 

Test  liquid Reservoir 
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supplier, then it had to be determined separately. This 

was carried out with reference to Eq. (2). The radius r in 

this equation was replaced by K, and this substitution was 

assumed to account for all porous media nonidealities 

such as variations in the porous media  porosity and the 

tortuous nature of the flow path. With such a change, the 

modified Lucas-Washburn equation becomes: 

t
2

cosK
h v12

η

θγ
=                                                          (3) 

It is evident from Eq. (3) that 2ηh2/t equals Kγlv cosθ, 

therefore a plot of 2ηh2/t versus the liquid surface tension 

(γlv) of the test liquids used, would give valuable 

information regarding γsv. In fact this plot will show a 

maximum which is analogous to the γsv of the 

investigated material [24-27]. Indeed, it is equated with 

the largest value of a liquid surface tension that yields 

cosθ=1. It must be noted that the penetration time for 

each liquid to reach a certain height for each powder was 

considered. The estimated surface free energies are also 

summarized in table 3. 

 

Prediction of surface tension and viscosity of the 

liquids using artificial neural networks 

The Neural Network Toolbox of MATLAB 7.0 [28] 

was used for the prediction of surface tension and 

viscosity of the liquids. Two artificial neural networks 

(ANNs) were used separately to predict surface tension 

and viscosity of the liquids. The network used for surface 

tension determination contained six inputs corresponding 

to the density as well as the time of the capillary rise to a 

certain height, in the corresponding powders of known 

particle size, bulk density, packing density, and surface 

free energy. The network employed for the viscosities 

included an extra input, namely, the surface tension. 

Two initial preexamination steps were undertaken 

prior to the prediction by ANNs. 

As a first step, the Curve Fitting Toolbox of 

MATLAB 7.0 was used to correlate each input variable 

of the network to its equivalent output. The results 

showed that use of only one input variable did not 

correlate well with the outputs of the networks. 

In the second step, the principal components analysis 

(PCA) of the Statistics Toolbox of MATLAB 7.0, was 

used in order to determine the minimum number of  

input  variables  required  to  give  the  maximal  accurate 

Table 3: Estimated surface free energy of the probe powders. 
 

Powders Surface free energy (mJ/m2) 

Kemira 650 35.6 

Super Talc WT-2500 28.1 

Baryte Ba-2500 27.9 

Penta Calcium�Carbonate 28.2 

Aerosil 200 58.3 

Printex V 63.9 

Syloid ED 30 27.8 

Ti-Pure R-900 35.4 

Bayferrox 130 26.0 

Zinc Oxide Z-1 25.5 

Kaoline KSP 27.6 

Super Talc WT-800 27.9 

Milky Calcium�Carbonate-800 28.3 

Kaoline KCC 29.2 

Super Talc WT-1500 28.1 

 

prediction. All the possible number of variables from two 

to a maximum of all inputs for each network were used. 

In this investigation, the results showed that compression 

of data was not possible and only when all variables were 

used, the errors were minimized.   

Since the number of inputs for the networks were 

determined by statistical means, the next step of the work 

was to determine the most appropriate architecture for the 

networks. For each network, several networks were 

created, trained and tested. The number of layers, the 

optimum number of neurons per layer and the transfer 

function(s) in the hidden layer(s) for each network, were 

obtained by trial and error. Care was taken to avoid 

overtraining. If overtrained, in a sense, the ANN adapts to 

the training data too well, so that further improvements of 

the ANN based on the training data will no longer 

provide further improvement in the prediction of the 

testing data. Therefore it was ensured not to include more 

weights and biases in both networks than the number of 

data   in   the  training  set.  The  15  liquids with 154 data 
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points were divided in two groups: a training set (11 

liquids with 138 data points) and a testing set (4 liquids 

with 16 data points). Networks were trained using the 

Levenberg-Marquardt back propagation algorithm. A 

linear activation function was used in the output layer of 

the networks. All the input and output data were 

normalized to the interval [-1 to 1] before training and 

testing. The performance factor (PF/3) and the product 

moment correlation coefficient (r2) were used in order to 

assess the accuracy of the experimental data in 

comparison with the data predicted by the trained 

networks. The performance factor (PF/3) was derived by 

Guan et al. [29] and in fact combines three different 

statistical measures of fit (suitably weighted) into a single 

numerical value which is given in Eq. (4). This facilitates 

ease of comparison by declaring the errors involved in the 

predictions, as follows: 

3

1
100

CV
V100

3/PF

AB ��

�
��

�
−++γ×

=                                 (4) 

where  CV is the coefficient of variation, γ was 

proposed by Coates et al. [30], and VAB was derived by 

Schultz [31], and each is respectively given in Eqns.  

(5) to (7): 
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where    
i

i

i

i

X

Y

Y

X
F ��=  

where N is the number of data set, and Xi and Yi are 

values for  element i of data set X and Y, respectively. 

It must be noted that for a perfect correlation r2 = 1 

and PF/3=0. The number of epochs (i.e. the number of 

presentation of a set of training (input and/or target) to a 

network for the calculation of new weights and biases) 

were fixed at 2000. At the same time, the initial values of 

the weights and biases were always initiated from random 

values, therefore, each run might have produced different 

output values. Therefore, each artificial neural network 

was made to run five times and the average value for r2 

and PF/3 were reported. Results of this investigation 

depicted that both ANNs having a hidden layer of 12 

neurons had the maximum r2 and the minimum PF/3. 

Also, in both cases, the tan-sigmoid transfer function 

applied to calculate the output value of the neurons of the 

hidden layer gave the best result. Therefore these 

architectures were selected for the rest of the work.  

Figs. 3 and 4 show the learning progress of  the selected 

ANNs with time. 

 

RESULTS  AND  DISCUSSION 

Figs. 5 and 6 show the experimentally determined 

surface tensions and viscosities, respectively, at 25 °C of 

the liquids versus the predicted values using the 

corresponding neural network. The present approach of  

artificial neural networks were able to predict with high 

accuracy the surface tension (i.e.  r2 = 0.95, PF/3 = 16) as 

well as the viscosity (i.e. r2 = 0.998, PF/3 = 13) of the 

probe liquids. These results indicate that neural networks 

can be considered as efficient tools for calculating surface 

tension and viscosity within the working range. 

Furthermore, prediction of surface tension and viscosity 

of liquids using ANNs has the following further 

advantages: 

1- Common methods for surface tension measurement 

of liquids include: 

(i) Force methods that derive the surface tension from 

the weight of the entrained meniscus at the perimeter of a 

device, such as a Wilhelmy plate or Du Noüy ring, 

impinging upon the interface. 

(ii) Pressure methods that determine the surface tension 

from the maximum pressure required to blow a bubble. 

(iii) Shape methods that analyse the distortion of a 

droplet surface as a function of surface tension (e.g., 

spinning drop, pendant drop and sessile drop methods).  

A drawback of theses methods is that the macroscopic 

sizes of these interfaces mentioned above require 

relatively large amounts of materials for the preparation 

of films and  can also require long monolayer equilibrium 
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Fig. 3: Plot of MSE versus number of epochs for both training 

and testing data of the first designed ANN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Plot of MSE versus number of epochs for both training 

and testing data of the second designed ANN. 

 

times. While the present approach requires relatively little 

amounts of materials and times of experimental 

procedure are relatively small.  

2- In the past few years, researchers have developed 

experimental procedures for the determination of surface 

tension and viscosity of liquids mixture [32-35]. Since, 

ANNs have the ability to generalize beyond the training 

data, designed and trained ANNs are able to predict the 

surface tension and the viscosity of liquid mixtures at  

25 °C and ambient pressure.   

3- A further advantage of ANN is its inherent fault 

tolerance, in other words, the overall performance is not 

affected significantly even if a few data are abnormal 

because of experimental errors. 

4 - Application of this procedure is easy and simple 

and requires only a representative database of properties 

for  the  powders  and  the  liquids.  Determination  of  the  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Plot  of  surface  tensions  of  the  liquids  predicted  by  

ANN  versus  their  experimental  values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Plot  of  viscosities  of  the  liquids  predicted  by  ANN  

versus  their  experimental  values. 

 

time of rise of liquids to a certain height of powder 

columns, and the software to create and  train adequate 

networks able to learn the relationship between the liquid 

properties and network’s inputs is easily attainable. 

It should be noted that in order to estimate the value 

of viscosity of a liquid by this approach, the value of its 

surface tension must be known. If both viscosity and 

surface tension of a liquid were unknown, this method 

would still be beneficial to calculate these quantities. In 

this case, the value of surface tension is initially 

determined by the aid of an initial first neural network. 

Then, the value of viscosity of liquid would be achieved 

using a final second neural network.  

 

CONCLUSIONS 

An approach has been devised and used to determine 

the  surface  tension  and  the  viscosity  of liquids. In this  
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approach surface tension and viscosity of liquids were 

predicted using artificial neural network (ANN) by the 

aid of the capillary rise procedure. The results showed  

that the ANN was able to predict with high accuracy the 

surface tension (i.e. r2 = 0.95, PF/3 = 16) as well as the 

viscosity (i.e. r2 = 0.998, PF/3 = 13)  of liquids. 
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