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ABSTRACT: In this paper, the MagnetoHydroDynamic (MHD) boundary layer flow over  
a nonlinear porous stretching sheet is investigated by employing the Homotopy Perturbation Transform 
Method (HPTM) and the Pade´ approximation. The numerical solution of the governing non-linear 
problem is developed. Comparison of the present solution is made with the existing solution and 
excellent agreement is noted. Graphical results have been presented and discussed for the pertinent 
parameters. The results attained in this paper confirm the idea that HPTM is powerful 
mathematical tool and it can be applied to a large class of linear and nonlinear problems arising  
in different fields of science and engineering. 
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INTRODUCTION 
Recently, many scientist and engineers have paid 

more attention on new methods for solving boundary 
layer equations, arising from mathematical modeling of 
fluid mechanics problems [1-7]. The study of laminar 
boundary layer flow of an incompressible fluid has  
 
 
 

several important engineering applications such as  
the aerodynamic extrusion of plastic sheets, the cooling of 
an infinite metallic plate in a cooling bath, the boundary 
layer along liquid film condensation process, glass and 
polymer industries. 
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In 1973, McCormack & Crane [8] introduced  
the stretching sheet problem. The stretching problems for 
steady flow have been extensively in various aspects,  
for example to non-Newtonian fluids, MHD flows, 
porous plate, porous medium and heat transfer analysis. 
The literature on the topic is quite extensive and  
hence can not be described here in detail. However, some 
most recent works of eminent researchers regarding  
the flow over a stretching sheet may be mentioned  
in the Refs [9-12]. 

Although the numerical approach allows studying 
more complex boundary conditions, the importance of 
analytical solutions is undeniable and it is witnessed by 
the large amount of work performed, particularly  
in recent years, on this subject. Various kinds of solutions 
methods [13-29] were used to handle the boundary layer 
problem. Recently Khan & Wu [30] developed the 
Homotopy Perturbation Transformation Method (HPTM) 
by combining the standard homotopy perturbation and 
Laplace transformation method for solving nonlinear 
problems. The Laplace transformation method was also 
combined with the well-known the variational iteration 
method [31] and the Adomian decomposition method [32-34] 
to produce a highly effective technique for handling 
many nonlinear problems.  

This technique basically illustrates how the Laplace 
transform can be used to approximate the solutions of  
the nonlinear differential equations by manipulating  
the homotopy perturbation method which was introduced 
first by He [35] and was further developed by 
Hesameddini & Latifizadeh [36]. The method is very well 
suited to physical problems since it does not require 
unnecessary linearization, discretization and other 
restrictive methods and assumptions which may change 
the problem being solved, sometimes seriously. The basic 
motivation of the present study is to extend our previous 
approach proposed in [30] to solve MHD boundary layer 
problem over a nonlinear porous stretching sheet on 
semi-infinite domain. The HPTM is much easier  
to implement as compared with the adomian decomposition 
method where huge complexities are involved.  
To the best of authors knowledge no attempt has been made  
to exploit this method to solve nonlinear equation on 
semi-infinite domain. Also our aim in this article is to compare 
the results with solutions to the existing ones [3]. 

THEORITICAL  SECTION 
Homotopy perturbation transform method 

In order to elucidate the solution procedure of the 
homotopy perturbation transform method, we consider 
the following general form of 3rd order non-homogeneous 
nonlinear ordinary differential equation with initial 
conditions is given by 

1 2 3f b (x)f b (x)f b (x)f g(y),′′′ ′′ ′+ + + =                         (1) 

f (0) ,  f (0) ,  f (0) ,′ ′′= α = β = γ                                       (2) 

According to Homotopy perturbation transform 
method [30], we apply Laplace transform (denoted 
throughout this paper by L) on both sides of Eq. (1):  

[ ] [ ]3 2
1s L f s s L b (x)f ′′− α − β− γ + +                             (3) 

[ ] [ ] [ ]2 3L b (x)f L b (x)f L g(f )′ + =  

Using the differentiation property of Laplace transform, 
we have 

[ ] [ ]2 3 3
1L f L g(f )

s s s s
β γα= + + + −                                  (4) 

[ ]1 2 33
1 L b (x)f b (x)f b (x)f
s

′′ ′+ +  

Operating with Laplace inverse on both sides  
of Eq. (4) gives 

[ ]3
1f G(x) L g(f )
s

= + −                                                  (5) 

[ ]1
1 2 33

1L L b (x)f b (x)f b (x)f
s

− ⎡ ⎤′′ ′+ +⎢ ⎥⎣ ⎦
 

Now we apply the homotopy perturbation method  

n
n

n 0
f p f

∞

=

= ∑                                                                    (6) 

the nonlinear term can be decomposed as 

n
n

n 0
g(y) Nf p H

∞

=

= = ∑                                                    (7) 

for some He’s polynomials Hn (see [37]) that are 
given by  

n
i

n in
i 0 p 0

1 dH N p f ) , n 0,1, 2,3...
n! dp

∞

= =

⎡ ⎤⎛ ⎞
= =⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑  

Substituting Eq. (7) and Eq. (6) in Eq. (5) we get 
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n
n

n 0
p f G(x)

∞

=

= +∑                                                           (8) 

1 n
n3

n 0

1 n n n
1 n 2 n 3 n3

n 0 n 0 n 0

1L L p H
s

p
1L L b (x) p f b (x) p f b (x) p f
s

∞
−

=

∞ ∞ ∞
−

= = =

⎛ ⎞⎡ ⎤⎡ ⎤
⎜ ⎟⎢ ⎥⎢ ⎥
⎜ ⎟⎢ ⎥⎣ ⎦⎣ ⎦
⎜ ⎟

⎡ ⎤⎡ ⎤⎜ ⎟
′′ ′− + +⎢ ⎥⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦⎣ ⎦⎝ ⎠

∑

∑ ∑ ∑
 

Where G(x) represents the term arising from prescribe 
initial condition.   

Comparing co-efficient of like powers of p, following 
approximations are obtained 

0
0p : f G(x)=                                                                 (9) 

[ ]1 1
1 03

1p : f L L H
s

− ⎡ ⎤= −⎢ ⎥⎣ ⎦
 

1
1 0 2 0 3 03

1L L b (x)f b (x)f b (x)f
s

− ′′ ′⎡ ⎤⎡ ⎤+ +⎣ ⎦⎢ ⎥⎣ ⎦
 

[ ]2 1
2 13

1p : f L L H
s

− ⎡ ⎤= −⎢ ⎥⎣ ⎦
 

1
1 1 2 1 3 13

1L L b (x)f b (x)f b (x)f
s

− ′′ ′⎡ ⎤⎡ ⎤+ +⎣ ⎦⎢ ⎥⎣ ⎦  

 
Problem formulation 

Let us consider the MHD flow of an incompressible 
viscous fluid over a non-linear porous stretching sheet  
at y=0. The fluid is electrically conducting under the 
influence of an applied magnetic field B(x) normal to  
the stretching sheet. The induced magnetic field is neglected. 
The resulting boundary-layer equations are: 

u v 0
x y
∂ ∂+ =
∂ ∂

                                                                 (10) 

22
0

2
B (x)u u uu v u

x y y
∂ ∂ ∂+ = ν −σ
∂ ∂ ∂ ρ

                                 (11) 

Here u and v are the velocity components in the x -
and y -directions respectively, ν is the kinematic 
viscosity, ρ is the density and σ is the electrical 
conductivity of the fluid. In Eq. (11), the external electric 
field and polarization effects are negligible, therefore 

n 1
20B(x) B x
−

=                                                               (12) 

The boundary conditions corresponding to the  
non-linear porous stretching sheet are given below 

n
0u(x,0) cx ,  v(x,0) V= = −                                         (13) 

u(x, y) 0 as y→ →∞  

Where c is the stretching parameter V0 is the porosity 
of the plate (where V0>0 corresponds to suction and V0<0 
corresponds to injection) . Upon making use of the 
following substitutions 

n 1
2 nc(n 1)x y ,  u cx f ( )

2
− ′+

η = = η
ν

                              (14) 

n 1
2

c (n 1) n 1dv x [f ( ) f ( )]
2 n 1

−ν + − ′= − η + η η
+

 

The resulting non-linear differential equation and 
boundary conditions are of the following form 

2f ff f Mf 0′′′′ ′′ ′+ −β − =                                               (15) 

f (0) K,  f (0) 1,  f ( ) 0′ ′= = ∞ =  

where 

n 1
2

2
0 0

c (n 1)
2

2 B V2n , M ,  K
n 1 c(1 n) x

−ν +

σ
β = = =

+ ρ +
                 (16) 

β is the non-dimensional parameter, M is the magnetic 
parameter, and K is the wall mass transfer parameter.  
In order to seek the solution of Eq. (15) through  
the homotopy perturbation transform method, we assume 
f (0) 0′′ = α < , in this work. By applying the aforesaid 

method subject to the initial conditions, we have 

[ ] 2
3 3

s 1L f K L (f ) Mf ff
s s
+α ′ ′ ′′⎡ ⎤= + + β + −⎣ ⎦               (17) 

The inverse of Laplace transform implies that 

2
2

3
1f ( ) K L (f ) Mf ff

2 s
αη ′ ′ ′′⎡ ⎤η = + η+ + β + −⎣ ⎦            (18) 

Applying the homotopy perturbation method, we have 

2
m

m
m 0

p f ( ) K
2

∞

=

αηη = + η+ +∑                                       (19) 

1 m m m
1m 2m m3

m 0 m 0 m 0

1p L L p H ( ) p H ( ) M p f ( )
s

∞ ∞ ∞
−

= = =

⎛ ⎞⎡ ⎤⎡ ⎤⎛ ⎞ ⎛ ⎞
⎜ ⎟′⎢ ⎥β η − η + η⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎣ ⎦⎝ ⎠

∑ ∑ ∑  

In the above equation H1m(η) and H2m(η)are the He’s 
polynomials [37] that represent the nonlinear terms. The few 
components of the He’s polynomials are given as follows 
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2
10 0H ( ) (f ) ( )′η = η                                                        (20) 

11 0 1H ( ) 2f ( )f ( )′ ′η = η η  

2
12 1 0 2H ( ) (f ) ( ) 2f ( )f ( )′ ′ ′η = η + η η  

13 1 2 0 3H ( ) 2f ( )f ( ) 2f ( )f ( )′ ′ ′ ′η = η η + η η  

2
14 2 1 3 0 4H ( ) (f ) ( ) 2f ( )f ( ) 2f ( )f ( )′ ′ ′ ′ ′η = η + η η + η η  

15 0 5 1 4 2 3

m

1m i m i
i 0

H ( ) 2f ( )f ( ) 2f ( )f ( ) 2f ( )f ( ),

H ( ) f ( )f ( )−
=

′ ′ ′ ′ ′ ′η = η η + η η + η η

′ ′η = η η∑

 

And for H2m(η) we find 

20 0 0H ( ) f ( )f ( )′′η = η η                                                    (21) 

21 0 1 1 0H ( ) f ( )f ( ) f ( )f ( )′′ ′′η = η η + η η  

22 0 2 1 1 2 0H ( ) f ( )f ( ) f ( )f ( ) f ( )f ( )′′ ′′ ′′η = η η + η η + η η  

23 0 3 1 2 2 1 3 0H ( ) f ( )f ( ) f ( )f ( ) f ( )f ( ) f ( )f ( )′′ ′′ ′′ ′′η = η η + η η + η η + η η  

24 0 4 1 3 2 2

3 1 4 0

H ( ) f ( )f ( ) f ( )f ( ) f ( )f ( )

f ( )f ( ) f ( )f ( )

′′ ′′ ′′

′′ ′′

η = η η + η η + η η +

η η + η η
 

25 0 5 1 4 2 3

3 2 4 1 4 1

H ( ) f ( )f ( ) f ( )f ( ) f ( )f ( )

f ( )f ( ) f ( )f ( ) f ( )f ( )

′′ ′′ ′′

′′ ′′ ′′

η = η η + η η + η η +

η η + η η + η η
 

m

2m i m i
i 0

H ( ) f ( )f ( )′′
−

=

η = η η∑

 

Comparing the coefficient of like powers of p, we 
have 

2
0

0: f ( ) Kp
2

αη= + η+η                                              (22) 

( )1 1
1 10 20 03

1p : f ( ) L L H H Mf ( )
s

− ⎡ ⎤′⎡ ⎤η = β − + η⎣ ⎦⎢ ⎥⎣ ⎦
         (23) 

[ ]2 1
2 11 21 13

1p : f ( ) L L H ( ) H Mf ( ) ,
s

− ⎡ ⎤′η = β η − + η⎢ ⎥⎣ ⎦  

Writing 
2

0f ( ) K
2

αη= + η+η  in Eq. (23), the other 

components are 

3 4
1

M K Mf ( )
6 6 6 24 24 12

β αβα α α⎛ ⎞ ⎛ ⎞η = + − η + − + + η +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (24) 

             
22

5
120 60

⎛ ⎞α βα− + η⎜ ⎟
⎝ ⎠

 

2
4

2
KK KMf ( )

24 24 24
⎛ ⎞βαη = − − η +⎜ ⎟
⎝ ⎠

 

22
5M KM M K K M

60 120 60 40 60 40 60 30
⎛ ⎞β β β αβα α− + − + + + − − η +⎜ ⎟
⎝ ⎠

 

2 22 2
6M KM M K

240 90 720 60 72 72 144 90
⎛ ⎞αβ α β αβ α βα α α α− + − + + + − η +⎜ ⎟
⎝ ⎠

 

2 2 2 22 2
72 M11 M

5040 630 315 504 252
⎛ ⎞α β α β α βα α− − + + η +⎜ ⎟
⎝ ⎠

 

3 3 23
811

40320 1260 2016
⎛ ⎞α β α βα − + η⎜ ⎟
⎝ ⎠

 

The series solution is given as 

2
3M Kf ( ) K

2 6 6 6
αη β α⎛ ⎞η = + η+ + + − η +⎜ ⎟

⎝ ⎠
                  (25) 

2
4KK KM M

24 24 24 24 24 12
⎛ ⎞β αβα α α− − − + + η +⎜ ⎟
⎝ ⎠

 

2 22 2
5M KM M K K M

60 120 60 40 60 40 60 30 120 60
⎛ ⎞β β β αβ α βα α α− + − + + + − − − + η +⎜ ⎟
⎝ ⎠

 

2 22 2
6M KM M K

240 90 720 60 72 72 144 90
⎛ ⎞αβ α β αβ α βα α α α− + − + + + − η +⎜ ⎟
⎝ ⎠

 

2 2 2 22 2
72 M11 M

5040 630 315 504 252
⎛ ⎞α β α β α βα α− − + + η +⎜ ⎟
⎝ ⎠

 

3 3 23
811 ....

40320 1260 2016
⎛ ⎞α β α βα − + η +⎜ ⎟
⎝ ⎠

 

 
The padé approximants 

Our aim in this section is mainly concerned with  
the mathematical behaviour of the solution f(η) in order 
to determine the value of free parameter α=f(0). It was 
formally shown by Wazwaz & Boyd [38, 39]  this goal can 
easily be achieved by forming the Padé approximants [40] 
which have the advantage of manipulating  
the polynomial approximation into a rational function  
to obtain the more information about  f(η). It is well 
known fact that Padé approximants will converges  
on the entire real axis if f(η) is free of singularities on the 
entire real axis. More importantly, the diagonal 
approximants are most accurate approximants, 
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therefore we will construct on diagonal approximants. 
Using the boundary condition f'(∞)=0, the diagonal 
approximants [M/M] vanish if the coefficients of numerator 
vanish with the highest power in the η. Choosing  
the coefficients of the highest power of η equal to zero,  
we get a polynomial equations in α which can be solved very 
easily by using the built in utilities in the most 
manipulation languages such as Maple and Mathematica. 
 
RESULTS  AND  DISCUSSION 

Tables l and 2 clearly reveal that present solution 
method namely HPTM shows excellent agreement with 
the existing solutions in the literature [3]. This analysis 
shows that HPTM suits for MHD boundary layer flow 
problems. 

The effects of the mass suction parameter K, the magnetic 
parameter M, and the non-dimensional parameter β  
are shown in Figs. 1-3. It is evident from Fig. 1 that when 
K increases, the velocity profiles are far away from the 
wall for mass injection, and the boundary layer thickness 
is more and more thicker. Fig. 2 and 3 are prepared for f ′  
against η for M, β respectively. It is observed from Fig. 2 
that when M, increases, the velocity profile is more and 
more far away from the wall, and the boundary layer 
thickness is more and more thicker. Fig. 3 indicates  
that when β increases; the velocity profile is more and 
more far away from the wall, whereas the boundary layer 
thickness increases. Therefore, it is concluded from Fig.1 
that f ′  decreases when K increases. One can see from the 
Fig. 2 and Fig. 3 shows similar effect with respect to  
M and β for f ′ . 
 
CONCLUSIONS 

The homotopy perturbation transform method  
is applied for numerical treatment of nonlinear differential 
equations that appear on boundary layers in fluid 
mechanics. The HPTM accelerates the rapid convergence 
of the series solution, dramatically reduces the size of 
work. The obtained series solution is combined with  
the diagonal Pade´ approximants to handle the boundary 
condition at infinity. The convergence of HPTM is also 
shown in Table.1 and Table 2.  Comparison of the present 
solution is made with the existing solution [3].  
An excellent agreement between the present and existing 
solutions is achieved. The analysis given here further 
shows confidence on HPTM. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Variation of ′f  for different values of K. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: Variation of ′f  for different values of M.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: Variation of ′f  for different values of β. 
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Table 1: Comparison of the numerical value of ′′f (0) = α , obtained by HPTM. 

K β M Croco Transformation [3] Shooting Method [3] HPTM 

0 1.5 0 -1.4902 -1.4860 -1.4902 

  1 -1.5253 -1.52527 -1.5253 

  5 -2.51616 -2.5162 -2.5161 

  10 -3.36632 -3.36631 -3.3658 

  50 -7.16471 -7.16471 -7.16354 

  100 -10.0664 -10.0664 -10.0648 

 
Table 2: Comparison of the numerical value of ′′f (0) = α , obtained by HPTM. 

K β M Croco Transformation [3] Shooting Method [3] HPTM 

0 5 0 -1.90433 -1.9025 -1.9031 

  1 -2.15344 -2.1529 -2.1529 

  5 -2.94150 -2.94144 -2.94142 

  10 -3.69567 -3.6956 -3.6956 

  50 -7.32561 -7.3256 -7.3256 

  100 -10.1816 -10.1816 -10.1816 

 
Received : Dec. 27, 2010 ;  Accepted : Sep. 18, 2011 
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