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ABSTRACT: A convenient adsorption kinetic equation has been offered for the modeling  

of adsorption kinetics in batch systems when diffusion taking parts to the rate-controlling step  

of adsorption. This model is suggested based on the Smoluchowski-Waite equation for diffusion-

controlled second-order reactions.  The proposed new model has better performance (lower 

absolute values of the relative errors (AARE) %) respect to the pseudo-second-order. Results of  

this equation are in agreement with experiment data especially at the initial times of adsorption  

that diffusion contributes to the rate-controlling step of adsorption. 
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INTRODUCTION 

sorption as treatment approach, is an effective 

separation and economic technique that has been widely 

considered from kinetic and equilibrium aspects [1-2]. 

The adsorption of an adsorbate from a liquid solution 

generally can be divided into three steps [3, 4]:  

(1) transport of solute across the liquid film circumambient 

the adsorbent particle (external film diffusion); 

(2) diffusion of solute within the pore adsorbent particle 

(intraparticle diffusion); (3) adsorption on the solid 

surface (surface reaction). 

It is needed to explain accurately the kinetics of 

adsorption to compare the calculated adsorption 

parameters obtained by models to the experimental 

adsorbent behavior [5]. Variety models have been 

introduced for describing kinetic of adsorption in the 

solid solution interface. For example, Elovich [6], 

Langmuir [7], statistical rate theory [8], intraparticle 

diffusion model [9], pseudo first-order(PFO)and pseudo  

 

 

 

Second-order (PSO) [10] are the most important sorption 

kinetic models. The other adsorption rate equations such 

as exponential kinetic model [11], hyperbolic tangent 

model [12], Mixed Surface Reaction and Diffusion 

Kinetic Model [13], modified pseudo first-order [14], 

modified pseudo second-order [15], pseudo n- order [16], 

modified pseudo n-order [17], two-site pseudo second-

order [18], mixed 1,2-order equation [19] have been 

introduced to illustrate kinetic data for adsorption batch 

processes.  And also already, Yao [20] proposed a new 

developed linear regression approach where the main 

kinetic equations are maintained without transformation. 

At the initial times of adsorption that external film 

diffusion is important; the mentioned models do not describe 

the kinetic data very accurately. So the aim of this study 

is to introduce a convenient kinetic equation that  

the effects of the present of diffusion and surface  

reaction have been taken into account together with  
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to Evaluate the kinetics of adsorption. Ten adsorption 

systems are chosen to illustrate the application of  

the model. Results of this model are in agreement  

with experiment data. 

 
Theory 

Despite the variety of kinetic models, it seems that 

PFO, intraparticle diffusion equation, and particularly 

PSO models are still the most common and popular 

kinetic equations 

 
Pseudo First Order Equation (PFO) 

The PFO model can illustrate the kinetics of sorption 

when comparative surface coverage during the process  

is negligible. The PFO has written as bellows [21]: 

 e

dq
k q q

dt
 1                                                              (1) 

Where k1 is the pseudo first order rate coefficient, qe 

and q are the amounts of the adsorbed species per unit 

mass of adsorbent at the equilibrium state and any time  

of adsorption, respectively. 

 
Pseudo-Second-Order Equation (PSO). 

PSO equation is the most common equation  

for modeling of the adsorption kinetic data. The differential 

expression of this model has as follow form [10]: 

 e

dq
k q q
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2
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Where k2 is the PSO rate coefficient. Real form of  

the above equation is expressed as 
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The most popular linear forms PSO model is written 

as follows: 
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Intraparticle Diffusion Model (IDM). 

For intraparticle diffusion controlled adsorption  

in spherical adsorbents, the following series expression  

is presented by Boyd et al. in 1947[22]. 

int

e n

D n tq
exp

q n r





 
      


2 2

2 2 2
1

6 1
1                             (5) 

Where Dint is the intraparticle diffusion coefficient  

and r is the particle radius. For short times, Eq.(5)  

can be approximated by 

IDq k t                                                                       (6) 

Where kID is constant of the intraparticle diffusion. 

Linear plot of q vs t  cross through the origin shows 

that the intraparticle diffusion is the only rate-controlling 

step. 

 

Description of a new model 

Based on the Smoluchowski equation [23] which  

it has been explained the rate of the process at any time  

is that the single reactants diffuse together multiplied  

by the number of A and B present in bulk at any time: 

.
A B

A.

dC dC
k C C

dt dt t
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Where 
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D
 


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                                                                           (8) 

In which ro is radius of the reaction cage, k' is 

)(4 0 BA DDr  , CA and CB are concentrations  

of A and B, respectively, t is time and D is the diffusion 

coefficient from the bulk solution to the interface.  

For adsorption processes at the solid/solution interface, 

we take into account that the adsorbate species diffuse  

to the adsorbent sites and then adhere on the surface 

positions. So, two rectifications are considered in Eqs. (7) 

and (8). The first one is A and B is considered adsorbate 

and adsorbent. The second modification, instead of bulk 

concentration B (CB), we assume that the value  

of existing vacant positions on the adsorbent at given time 
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Table 1: The reported details of Experimental data used in this research. 

Sys. no. Data Reference 

1 
Azocarmine B adsorption onto P-g-pAPTAC 

microspheres 
[24] 

2 Neutral Red adsorption on peanut husk [25] 

3 food yellow 3 on chitosan [26] 

4 cadmium(II) ions on eucalyptus bark [27] 

5 Pb(II) ion on clinoptilolite [28] 

6 Dye removal on activated carbon [29] 

7 Acid violet 17 on Orange peel [30] 

8 Malachite Green on cyclodextrin [31] 

9 organic chloride on Na-LSX zeolite [32] 

10 naproxen onto functionalized nano-clay [33] 

 

and concentration, which is equivalent to (qe – q) 2. Then, 

by taking account the mentioned rectifications,  

one derives  

 
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Where C is the concentration of adsorbate in the bulk 

of liquid at each time. The adsorbate concentration  

in bulk (C) is diminished though of adsorption operation, 

so C at any time is written as follows 
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By replacing Eq. (10) in Eq. (9) make the following 

equation 
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.
e eA kC an B kC  0 52                                        (13) 

Equation (12) is the new model taking account  

both diffusion and surface reaction as the rate-limiting stages 

 

RESULTS AND DISCUSSION 

In order to evaluate the proposed model compare  

with PSO for modeling of adsorption kinetics at  

the solid/solution interface, the available data of adsorption 

had been collected from the literatures. Table 1 shows  

10 systems. The arithmetic average of the absolute values 

of the relative errors (AARE) was determined to provide 

an indication of the accuracy of the correlation. The AARE 

can be written as: 

exp calN

exp
i

q q
AARE%

N q


 

1

100
                                    (14) 

In this equation, N is the number of data points, qexp  

is the experimental amount of the adsorbed species per 

unit mass of adsorbent at any time of adsorption and qcal 

is the calculated one. 

Table 2 represented AAREs for all data sets produced 

by the proposed model and the PSO model. As mentioned 

earlier, in most of the articles the linear format PSO 

equation is the extensively applied equation for modeling 

of adsorption kinetics. Results disclosed that the 

suggested model was more accurate compared 
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Table 2: AARE (%) for 10 experimental data sets produced by proposed model and pseudo second kinetic model. 

Sys. no. Proposed model pseudo second kinetic model 

1 2.52 9.79 

2 3.04 16.15 

3 1.06 7.03 

4 0.69 2.0 

5 2.19 7.85 

6 1.81 3.31 

7 2.0 2.34 

8 4.40 5.88 

9 3.39 5.84 

10 0.85 1.25 

Mean 2.19 6.14 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Variation of q with time: (a): total time (b) initial time. 

 

with the PSO model. The mean AARE% values for the PSO 

is 6.14, whereas the mean AARE% values for the suggested 

model is 2.19. 

Fig. 1a represents the Changes of q with time for 

dates [19] according to on new model and PSO model. 

This figure presents that q Changes with time by Eq 12 is 

very accommodation to the experimental one. Fig. 1b 

shows the variation of q with time for the initial time that 

diffusion effects the rate-controlling step of adsorption, 

the rustles express that the new equation is in agreement 

with data in compared to PSO model. 

In another report the adsorption of food yellow 3 onto 

chitosan was considered [25]. Fig. 2a shows the variation 

of q with time for this data based on new equation  

and PSO model. Fig. 2b represents the variation of q  

with time for initial time. In both Figures, the proposed model 

is better than the PSO model. 

 

CONCLUSIONS 

In this research, a new kinetic equation was 

introduced that effect of existence of diffusion and 

surface reactions on adsorption kinetics at the 

solid/solution interface in batch experimental data  

is considered. Accuracy of the model was compared  

with PSO model using 10 published adsorption data sets.  

The results showed the new model has excellent agreement 
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Fig. 2: Variation of q with time: (a): total time (b) initial time. 

 
with those reported in the literature especially at initial 

times of adsorption. 
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