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ABSTRACT: Sulfonated magnetic nanoparticles (SO3H-Fe3O4@SiO2 MNPs) have been explored 

as an efficient, cost-effective, and recyclable nanocatalyst for the facile synthesis of 3,4-dihydro-2H-

indazolo[1,2-b]phthalazin-1,6,11(13H)-triones through a one-pot three-component reaction between 

aldehydes, dimedone, and phthalhydrazide under mild and green (solvent-free) conditions. Simple 

separation of the catalyst using an external magnet, efficient recyclability of the developed 

magnetic nanocatalyst up to five fresh runs without significant loss in its catalytic activity, 

excellent yields of the designed reactions (88 to 98%), low reaction times as well as solvent-

free and facial reaction condition are some advantages of the present procedure that qualified 

the fabricated magnetic nanocatalyst for industrial applications. 
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INTRODUCTION 

As a decisive fact, growth of mankind, society, and 

industrializations has led to increasing concerns  

on environmental issues in the past few decades. In this 

context, a great deal of concerns is related to chemical 

industries [1, 2]. So many strategies including, selected 

green media (e.g., water) or solvent-free procedures,  

eco-friendly reagents, ultrasound, or microwave-assisted 

techniques, as well as recyclable catalysts, have been 

introduced to solve this problem [3]. Among these, 

recyclable heterogeneous catalysts have attracted a great 

deal of interest due to their superior features including,  

 

 

 

eco-friendly and economically viable organic 

transformations academically and industrially [3, 4]. 

In this context, metal oxide nanoparticles are  

of particular interest as heterogeneous catalysts due to their 

interesting structural properties as well as high catalytic 

activities. These nano-sized particles are easily dispersible 

in reaction mediums after proper surface modification [5-7]. 

In recent years, numerous approaches have been design 

and developed for the fabrication of heterogeneous 

supported nanocatalysts through immobilizing different 

homogeneous precursors on solid supports. The most  

 

 

 

* To whom correspondence should be addressed. 

+ E-mail: o.badalkhani@yahoo     ;     m_jaymand@yahoo.com     ,     m.jaymand@gmail.com 

1021-9986/2020/3/13-22      10/$/6.00 

 



Iran. J. Chem. Chem. Eng. Zareh M.R. et al. Vol. 39, No. 3, 2020 

 

14                                                                                                                                                                    Research Article 

important advantages of immobilized nanocatalysts  

over their non-supported counterparts can be listed as low/or 

non-toxic, air- and moisture-compatible, easily separable 

and recyclable [8-10]. Despite these advantages, such 

nanoparticles often suffer from the tedious task of 

recycling via expensive ultra-centrifugation, which limits 

their utility as catalysts. However, the issue of separation 

and reusability of these nanocatalysts has been solved 

using Magnetic Nanoparticles (MNPs) as excellent 

supports amenable to simple magnetic separation [11-15]. 

These NPs have been extensively used in various fields 

including, analytical and bioanalytical chemistry [16], 

cell separation [17], protein separation [18], drug delivery 

systems [19], magnetic resonance imaging (MRI) [20], 

and hyperthermia cancer treatment [21]. Moreover, 

MNPs are conveniently used as supports for 

immobilization of homogeneous catalysts and  

can be functionalized effectively through appropriate surface 

modifications [22-37]. Therefore, MNPs supported-

catalytic systems can be considered as potential 

candidates mainly due to their high surface area, low cost, 

easy synthesis, and magnetic properties that lead to a facile 

separation through an external magnetic field [38-41]. Based 

on mentioned superior features, many MNPs-supported 

catalysts have been successfully utilized  

for catalyzing a broad series of chemical reactions such as 

oxidation [42], polymerization [43], and even enzymatic 

reactions [44]. In recent years, a variety of magnetic 

nano-oxides modified with different acidic moieties  

such as phosphotungstic (H3PW12O40), Pressler-type 

heteropolyacid, sulfamic, and sulfonic acids have been 

synthesized and successfully employed to selectively 

catalyze various chemical reactions [45-49]. 

Heterocyclic compounds containing nitrogen elements 

are well-known compounds and many of them occur 

naturally. In general, these compounds constitute  

the largest portion of chemical entities, which provide useful 

scaffolds for many natural products, fine chemicals,  

and biologically active pharmaceuticals that are of vital 

importance to life [50-53]. Among these, phthalazine 

derivatives are important members of nitrogen-containing 

heterocyclic compounds with a bridgehead hydrazine 

unit, which possess multiple pharmacological properties 

including, anti-convulsant [54], vasorelaxant [55], and 

cardiotonic [56] agents. Albeit, numerous approaches 

have been introduced so far for the synthesis of different 

phthalazine derivatives [57-60], demands for 

development of more improved synthetic strategies  

for scaffold manipulation of N-heterocycles containing 

phthalazine moiety still exist due to their wide range of 

applications. 

In continuation of our research interest for developing 

more benign and efficient heterogeneous nanocatalysts 

and their application for the synthesis of various 

heterocyclic compounds including, 2H-indazolo[1,2-

b]phthalazinetriones [48, 61, 62], herein, for the first time 

we investigated the catalytic capability of sulfonated 

magnetic nanoparticles (SO3H-Fe3O4@SiO2 MNPs) as a 

magnetically recoverable heterogeneous catalyst for the 

synthesis of 2H-indazolo[1,2-b]phthalazine-1,6,11(13H)-

trione derivatives. The effect of some parameters 

including, solvent, time, temperature, and amount of 

catalyst on the yield of reactions were also examined.  

 

EXPERIMENTAL SECTION 

Materials 

Chemicals used in this work were purchased from 

Fluka (Switzerland) or Merck (Darmstadt, Germany) 

chemical companies and used without purification.  

 

Instrumentations 

Fourier Transform InfraRed (FT-IR) spectra  

were recorded in KBr pellets on a Shimadzu 435-U-04 FTIR 

spectrometer (Kyoto, Japan). 1H NMR and 13C NMR 

spectra were obtained using a Bruker instrument (Bruker, 

Ettlingen, Germany) in DSMO-d6 or CDCl3 as solvents 

and tetramethylsilane (TMS) as an internal standard. 

Mass Spectra (MS) were recorded with a FINNIGAN-

MAT 8430 spectrometer (Bremen, Germany) operating  

at an ionization potential of 70 eV. Ultrasonication  

was performed in a 2200 ETH-SONICA ultrasound cleaner 

with a frequency of 45 kHz. 

 

Synthesis of the catalyst (SO3H-Fe3O4@SiO2 MNPs) 

The catalyst was synthesized according to our 

previously reported procedure and fully characterized  

by different analytical techniques [63]. In brief, a mixture 

of FeCl3.6H2O and FeCl2.4H2O were sonicated in a basic 

solution to produce Fe3O4 NPs. In the second step, a layer 

of SiO2 was coated on the external surface of the Fe3O4 

NPs in order to protect the Fe3O4 NPs from possible 

oxidation or aggregation. Subsequently, the fabricated 
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Scheme 1: Sequential synthesis of sulfonated magnetic nanoparticles (SO3H-Fe3O4@SiO2 MNPs). 

 
Fe3O4@SiO2 core-shell MNPs were treated with  

3-chloropropyltrimethoxysilane to afford Fe3O4@SiO2-Cl 

core-shell MNPs. In the following step, these MNPs  

were treated with ethylenediamine to produce aminated 

Fe3O4@SiO2 MNPs. Eventually, sulfonation of both 

amine groups in the aminated Fe3O4@SiO2 MNPs  

was carried out by reaction with chlorosulfonic acid under 

ultrasonication to yield the N,N'-disulfonated 

Fe3O4@SiO2 MNPs (Scheme 1). The characterization of 

the catalyst was performed by different analytical 

techniques such as elemental analysis, FTIR, EDX, SEM, 

XRD, and XRF in our previous work [63]. 

 

General procedure for the SO3H-Fe3O4@SiO2 MNPs-

catalyzed synthesis of 2H-indazolo[2,1-b]phthalazine-

1,6,11(13H)-triones (4a-i)  

A 25-mL round-bottomed flask was charged with 

aromatic aldehyde 1 (1 mmol), dimedone (0.14 g, 1 mmol), 

phthalhydrazide (0.16 g, 1 mmol), and the nanocatalyst 

(0.03 g). The reaction mixture was stirred at 80 °C under 

the solvent-free condition for an appropriate time until  

the reaction was completed as monitored by tine layer 

chromatography (TLC; Table 2). Then, the reaction 

mixture was cooled to room temperature, diluted with 

ethanol (10 mL) and stirred at room temperature for about 

10 minutes. After separation of the catalyst using  

an external magnetic bar, the solvent (ethanol) was removed 

using a rotary evaporator under reduced pressure. The 

crude product was washed with water and recrystallized 

from ethyl acetate/n-hexane (1:3 v/v) to afford the pure 

product.  

 

Selected data 

3,4-Dihydro-3,3-dimethyl-13- (4-(prop-2-yn-1-yloxy)phenyl) 

-2H-indazolo[1,2-b]phthalazine-1,6,11(13H)-trione  (4h) 

mp 222-226 ºC; FTIR (KBr, νmax/cm-1): 3279, 3042, 

2956, 2125, 1655, 1629, 1603, 1511; 1H NMR (250 MHz, 

DMSO-d6) δ: 1.03 (s, 6H, 2Me), 2.17 (s, 2H, CH2), 2.41 

(t, 2H, C≡CH), 3.02-3.20 (m, 2H, CH2CO), 4.67 (s, 2H, 

C≡CH), 6.15 (s, 1H, CH), 6.79-8.15 (m, 8H, H-Ar) ppm; 



Iran. J. Chem. Chem. Eng. Zareh M.R. et al. Vol. 39, No. 3, 2020 

 

16                                                                                                                                                                    Research Article 

 

 

 

 

 

 

 

Scheme 2: Synthesis of 2H-indazolo[1,2-b]phthalazine-1,6,11(13H)-triones 4a-i catalyzed by SO3H-Fe3O4@SiO2 MNPs. 

 
13C NMR (62.9 MHz, CDCl3) δ: 28.5, 28.6, 34.6, 38.0, 

51.0, 55.7, 64.4, 75.6, 76.6, 77.0, 77.4, 78.4, 115.0, 118.4, 

127.7, 127.9, 128.5, 128.9, 129.1, 129.3, 133.5, 134.5, 

150.8, 154.3, 156.0, 157.8 ppm; MS ( m/z): 426.5 (M+).  

 

3,4-Dihydro-3,3-dimethyl-13-(2-(prop-2-yn-1-yloxy)phenyl) 

-2H-indazolo[1,2-b]phthalazine-1,6,11(13H)-trione (4i) 

mp 233-236 ºC; FTIR (KBr,νmax/cm-1): 3316, 3033, 

2958, 2137, 1655, 1622, 1602, 1493; 1H NMR (300 MHz, 

CDCl3) δ: 1.20-1.28 (s, 6H, Me), 2.20-2.34 (s, 2H, CH2), 

2.39-2.43 (t, 1H, C≡CH), 3.18-3.25 and 3.46-3.52 (dd, 

2H, CH2CO), 4.49-4.51 (s, 2H, CH2CCH), 6.51 (s, 1H, 

CH), 6.80-8.36 (m, 8H, H-Ar) ppm; 13C NMR (62.9 

MHz, CDCl3) δ: 28.1, 29.0, 34.5, 38.1, 50.9, 55.9, 63.8, 

75.7, 76.6, 77.0, 77.2, 77.8, 116.6, 121.8, 127.7, 128.0, 

129.0,129.3, 129.9, 131.5, 133.2, 134.1, 151.7, 154.1, 

155.1, 156.0 ppm; MS ( m/z): 426.5 (M+). 

 

3,4- Dihydro -3,3- dimethyl -13- (4-methylphenyl) -2H-

indazolo[1,2-b]phthalazine-1,6,11(13H)- trione (4f) 

mp 228-230 ºC; FTIR (KBr, νmax/ cm-1): 3036, 2957, 

1658, 1623, 1611; 1H NMR (90 MHz, CDCl3) δ: 1.21 (s, 

6H, 2Me), 2.29 (s, 3H, Me), 2.32 (s, 2H, CH2CO), 3.31-

3.36 (dd, 2H, CH2), 6.41 (s, 1H, CH), 7.17-8.29 (m, 8H, 

H-Ar) ppm. 

 

3,4-Dihydro -3,3- dimethyl -13- (4-Bromorophenyl) -2H-

indazolo[1,2-b]phthalazine-1,6,11(13H)-trione (4g ) 

mp 266-268 ºC; FTIR (KBr, νmax /cm-1): 3075, 2957, 

1688, 1654, 1623, 1604; 1HNMR (90 MHz, CDCl3) δ: 

1.21 (s, 6H, 2Me), 2.33 (s, 2H, CH2CO), 3.30-3.33 (dd, 

2H, CH2), 6.41 (s, 1H , CH), 7.33-8.30 (m, 8H, H-Ar) 

ppm. 

 

RESULTS AND DISCUSSION 

In order to explore the catalytic potential of SO3H-

Fe3O4@SiO2 MNPs as a heterogeneous acidic 

nanocatalyst in organic transformations, we decide  

to synthesize 3,4-dihydro-2H-indazolo[1,2-b]phthalazine-

triones via one-pot three-component reactions between 

aldehydes, 5,5-dimethyl-1,3-cyclohexanedione 

(dimedone), and phthalhydrazide as shown in Scheme 2. 

 

The catalytic activity of the SO3H-Fe3O4@SiO2 MNPs 

and optimization of the reaction condition 

To optimize the reaction condition, we preliminarily 

carried out the reaction between benzaldehyde, 

dimedone, and phthalhydrazide as the model reaction.  

In addition, the effect of the reaction parameters such as 

catalyst loading, solvent (H2O, EtOH, and CH3CN), time, 

and temperature on the rate and yield of this model 

reaction was investigated. The experimental results 

summarized in Table 1, clearly indicated that the best 

results in terms of the reaction rates and yields  

are obtained when the reaction was carried out under solvent-

free conditions at 60 °C using a small amount of catalyst 

(0.03 g) (entry 7). Also, it was noted that no further 

improvement in the yield occurs when the reaction  

was conducted at higher temperatures and prolonged reaction 

times (entries 8-11). Furthermore, increasing the amount 

of the catalyst to 0.05 g caused a considerable reduction 

of the reaction yield (entry 13). Moreover,  

the indispensable role of the catalyst in the reaction  

was approved by conducting the reaction in the absence 

of the catalyst which resulted in only a trace amount of 

the expected product (entry14). 

To extend the generality and scope of the reaction,  

we conducted the reaction with a diverse series of substituted 

aromatic aldehydes (1a-i) under the optimal conditions as 

discussed above (i.e. solvent-free, 60 ºC, and catalyst 

loading of 0.03 g). According to the experimental results 

summarized in Table 2, the reactions generally proceeded 

almost fast and smoothly to furnish the respective 

products in excellent yields (88-98%) irrespective of 
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Table 1: Screening the reaction parameters for the model synthesis of 3,4-dihydro-3,3-dimethyl-13-phenyl-2H- 

indazolo[1,2-b]phthalazine-1,6,11(13H)-trione.a 

NH

NH

O

NH

NH
O

O

O O

O

O

Ph

O

H

Ph

SO3H-Fe3O4@SiO2

+ +

 

Yield (%)b Time (min) Temperature (ºC) solvent Catalyst (g) Entry 

38 80 r.t. no solvent 0.01 1 

15 80 r.t. H2O 0.01 2 

32 80 r.t. EtOH 0.01 3 

12 80 r.t. CH3CN 0.01 4 

75 80 reflux EtOH 0.01 5 

87 100 40 no solvent 0.03 6 

98 25 60 no solvent 0.03 7 

98 25 80 no solvent 0.03 8 

92 50 100 no solvent 0.03 9 

98 50 80 no solvent 0.03 10 

95 80 80 no solvent 0.03 11 

90 60 60 no solvent 0.02 12 

85 60 80 no solvent 0.05 13 

trace 120 80 no solvent no catalyst 14 

a Condition: benzaldehyde (1 mmol), phthalhydrazide (1 mmol), dimedone (1 mmol), solvent (5 mL). 
b Isolated  pure yield 

 

the nature of the substituent groups attached to the aromatic 

rings.  

It should be pointed out that using this procedure two 

new compounds (4h and 4i) were synthesized and 

characterized by their physical properties and spectral 

data (FTIR, 1H/13C NMR, and MS). All other products  

are known compounds and characterized by their physical 

properties and spectral data (FTIR and 1H NMR), and 

compared with the reported data (Table 2). 

 

The proposed catalytic reaction mechanism 

A plausible mechanism to explain the formation of 

3,4-dihydro-2H-indazolo[1,2-b]phthalazine-1,6,11(13H)-

triones is shown in Scheme 3. It is likely that, initially, 

the dimedone in its enolized form undergoes 

condensation with the catalyst-activated aldehyde 

followed by dehydration to produce the intermediate 

arylidene A. In the next step, the nucleophilic addition 

reaction of the phthalhydrazide with the intermediate  

A takes place under the catalytic effect 

 

Regeneration and reusability of the catalyst  

The regeneration and reuse of a catalyst are important 

from materials science, ecological, as well as economic 

point of views. The reusability of the SO3H-Fe3O4@SiO2 

catalyst was examined for the model reaction between 

benzaldehyde, dimedone, and phthalhydrazide.  

The recycling process involved the isolation of the catalyst 

from the reaction mixture simply using an external 

magnetic bar followed by washing with ethanol 
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Table 2: Synthesis of 13-aryl-3,4-dihydro-3,3-dimethyl-2H-indazolo[1,2-b]phthalazine-1,6,11(13H)-triones catalyzed  

by SO3H-Fe3O4@SiO2 MNPs under solvent-free condition at 60 ºC.a 

NH

NH

O

NH

NH
O

O

O O

O

O
O

H

Ph

Ar Solvent-Free /

SO3H-Fe3O4@SiO2

+ +

1a-i 2 3
4a-i

60 oC

 

Mp (˚C) 

Yield (%)b Time (min) Product Ar Entry 

Reported Found 

204-206 [57] 202-205 98 25 4a C6H5 1 

219-221 [58] 219-222 90 30 4b 2,4-(Cl)2C6H3 2 

262-264 [57] 258-260 92 20 4c 4-ClC6H4 3 

265-267 [60] 266-268 92 25 4d 4-BrC6H4 4 

227-229 [57] 228-230 98 25 4e 4-MeC6H4 5 

217-219 [58] 214-216 96 20 4f 4-NO2C6H4 6 

260-264 [60] 262-264 89 30 4g 3-BrC6H4 7 

- 222-224 92 35 4h 4-(HC≡C-CH2O)C6H4 8new 

- 233-235 88 37 4i 2-(HC≡C-CH2O)C6H4 9new 

a Condition: aldehyde 1 (1 mmol), dimedone 2 (1 mmol), phthalhydrazide 3 (1 mmol), catalyst (0.03 g), temperature 60 oC. 
b Isolated pure yield. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 3: The proposed mechanism for the synthesis of 3,4-dihydro-2H-indazolo[1,2-b] phthalazine-1,6,11(13H) 

-triones catalyzed by SO3H-Fe3O4@SiO2 MNPs. 

 

and drying in reduced pressure at room temperature.  

As shown in Fig. 1, the recovered catalyst can be used  

for five consecutive fresh runs without any noticeable 

loss of the catalytic activity. 

CONCLUSIONS 

In summary, a simple procedure has been developed 

for the synthesis of 2H-Indazolo[1,2-b]phthalazine-

1,6,11(13H)-triones via one-pot three-component reaction 
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Fig. 1: Reusability of SO3H-Fe3O4@SiO2 nanocatalyst for the 

synthesis of 2H-indazolo[1,2-b] phthalazine-1,6,11(13H)-triones. 

 

between variously substituted aromatic aldehydes, 

phthalhydrazide, and dimedone under the green solvent-

free condition in the presence of sulfonated magnetic 

nanoparticles (SO3H-Fe3O4@SiO2 MNPs) as an effective 

and magnetically recyclable nanocatalyst. The reactions 

proceed smoothly under facial condition including, 

solvent-free and mild reaction condition, as well as 

almost in short reaction times and easy experimental  

set-up. In addition, under this condition, the reactions 

lead to excellent yields (88 to 98%). As a result,  

the SO3H-Fe3O4@SiO2 MNP has high potential as  

a heterogeneous catalyst in organic synthesis mainly due to 

ease of synthesis, high stability and selectivity, easy 

separation from reaction mixtures using an external 

magnetic bar, and efficient recyclability and reusability. 
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