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ABSTRACT: A series of 8 new complexes of titanium and zirconium with diamido ligands bearing 

an ethylene and propylene bridge between the two amido groups were synthesized and tested  

for ethylene polymerization. Titanium complexes bearing an ethylene bridge between the two amido 

groups showed higher activities than the derivatives with a propylene bridge. In the case of  

the zirconium complexes, the propylene bridged complexes were more active than the corresponding 

ethylene bridged. The introduction of bulky groups on the ligand structure resulted in an increase  

of the activity. DFT calculations were performed to determine the activation energy barriers  

for different reaction steps. The calculated activation energy for the insertion of ethylene into  

an M-CH3 bond is in the range of 12.2-16.8 kcal/mol and the activation energy for the chain termination 

via β-H transfer reaction is 12.5-14.4 kcal/mol. 
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INTRODUCTION 

Post-metallocene olefin polymerization catalysts have 

been extensively explored during the last three decades 

largely due to their high performance in olefin 

polymerization and co-polymerization reactions [1-16]. 

Transition metal complexes of diiminopyridine [17-19], 

α-diimine [20-26], β-diimine [27,28], phenoxyimine [29-32] 

and chelating diamido ligands [33-43] are the most 

frequently studied post-metallocene catalysts. Chelating 

diamido complexes of group (IV) metals are precursors  

of a promising catalyst system for olefin polymerization [33-43]. 

A variety of Ti and zirconium complexes with  

diamide ligands based on naphthalene, phenylene,  

 

 

 

ethylene and propylene backbones have been studied  

for olefin polymerization reactions. Carone et al. reported 

ethylene polymerization properties of titanium and 

zirconium diamido complexes with o-C6H4(NSiMe3)2 

ligands [33]. The zirconium complex showed good 

activity for ethylene polymerization but the titanium 

complex was less reactive. Titanium complexes with 

N,N´-disilylated 1,8-diaminonaphthalene ligands reported 

by Park and coworkers showed good activities for 

ethylene polymerization [36]. A diamido catalyst of 

titanium, [RN(CH2)3NR]TiMe2 (R = 2,6-iPr2C6H3)/MAO, 

reported by Scollard et al. produced 350000 kg of  
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poly(1-hexene)/mol of catalyst. However, its zirconium 

analogue produced only 150 kg of poly(1-hexene)/mol 

catalyst.h [34,39]. The titanium catalysts 

[ArN(CH2)3NAr]TiCl2 (R = 2,6-iPr2C6H3) and 

[ArNCH2PhCH2NAr]TiCl2 (R = 2,6-iPr2C6H3) in 

combination with trialkylaluminium and boron 

compounds as cocatalysts showed high activities for 

propylene polymerization [41,42] and ethylene/2-butene 

copolymerization reactions [43]. These diamido systems 

are of great interest because they can also act as 

precursors for living α-olefin polymerization catalysts 

[35]. Herein we are reporting a new diamine ligand 

system containing an aniline moiety and a tertiary 

butylamine moiety bridged with an ethylene or propylene 

group. The corresponding titanium and zirconium complexes 

were investigated for their ethylene polymerization 

potential after activation with methylaluminoxane (MAO). 

 

EXPERIMENTAL SECTION 

General aspects 

All reactions were carried out using Schlenk line 

technique under an inert atmosphere of argon. Toluene 

and n-pentane were purified by distillation over Na/K 

alloy. Deuterated solvents (CDCl3 and CD2Cl2) were 

purchased from Eurisotop and stored over molecular 

sieves (3Å). Argon (5.0) and ethylene (3.5) were 

purchased from Rieβner Company. Methylaluminoxane 

(10% in toluene) was purchased from Chemtura Europe 

Limited. All other starting materials were commercially 

available and used as received. 

 

NMR spectroscopy 

A Varian Inova (400 MHz) spectrometer was 

available to record the NMR spectra. All spectra were 

recorded at 298K. The chemical shifts of the residual 

proton signals of the solvent were used as references  

(δ = 7.24 ppm for chloroform and δ = 5.30 ppm for 

methylene chloride) for the 1H-NMR spectra, while  

the chemical shift of the solvent was used as a reference 

(δ = 77.0 ppm for chloroform-d1 and δ = 54.0 ppm  

for methylene, chloride-d2) for the 13C-NMR spectra. 

 

GC/MS 

A FOCUS Thermo gas chromatography coupled with  

a DSQ mass detector was available to record the GC/MS 

spectra. A 30m HP-5 fused silica column (internal 

diameter 0.32 mm, film 0.25 µm and flow 1 mL/min)  

was used and helium (4.6) was applied as the carrier gas.  

The following temperature program was used to record 

the measurements. 

Starting temperature: 50°C, duration: 2 minutes; 

Heating rate: 20°C/minute, duration: 12 minutes; 

Final temperature: 290°C, duration: 27 minutes. 

 

DSC analysis 

DSC analyses were performed on a Mettler Toledo 

DSC/DTA 821e instrument. The polymer samples were 

prepared by enclosing 4-6mg of the polymers in standard 

aluminum pans. The samples were introduced into  

the autosampler of the instrument and the measurements 

were recorded using the following temperature program: 

First heating phase: from 50°C to 160°C (10°C/minute); 

Cooling phase: 160°C to 50°C (10°C/minute); 

Second heating phase: from 50°C to 160°C 

(10°C/minute). 

Nitrogen was used as a cooling medium. Melting 

enthalpies and melting points were taken from the second 

heating phase. The values were calibrated using indium 

as a standard (m.p. 429.78K, Hm = 28.45J/g). 

 

Computational details 

DFT calculations were carried out with Gaussian 09 [44] 

using B3LYP functional [45-47]. All geometries  

were optimized using the 6-31G* basis set for H, C and N 

atoms. Titanium and zirconium atoms were described 

with the Stuttgart RSC 1997 ECP basis set. Transition 

states were optimized using the Berny algorithm [48]. 

The optimized geometries were verified by vibrational 

frequency analysis. 

 

General description of ethylene polymerization 

experiments 

For the catalytic ethylene polymerization, complexes 

5-12 were activated with MAO (M:Al=1:1000).  

The activated complexes were suspended in 250mL  

n-pentane and transferred to a 1-liter Büchi reactor.  

An ethylene pressure of 10 bar was applied for 1 hour. 

After disconnecting the ethylene flow, the system was 

cooled to room temperature. The pressure was released 

and the obtained polymer was filtered over a frit, washed 

with dilute hydrochloric acid, water and finally  

with acetone and dried under vacuum. 
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General synthesis procedure for the diamine 

compounds (1-4) 

A mixture of 20mmol of a dibromoalkane compound, 

10mmol of the appropriate aniline, 10mmol of potassium 

carbonate and DMF (10mL), was heated at 100-105°C 

for 5 hours. After cooling to room temperature, distilled 

water (100mL) was added and the mixture was extracted 

with diethyl ether (2×100mL). The ether phase was dried 

over sodium sulphate, the solvent was removed by rotary 

evaporation and the residue was distilled to give  

the N-substituted bromoalkyl aniline derivative in  

60-70% yield. An amount of 5mmol of the appropriate  

N-substituted bromoalkyl aniline derivative, 5mmol of 

potassium carbonate and an excess of tertiary butylamine 

were refluxed in 100mL THF for 6-8 hours. After cooling 

to room temperature, 50mL of distilled water and 100mL 

of diethyl ether were added. The organic phase  

was separated and dried over sodium sulphate. The solvent 

was removed and the residue was distilled to give  

the required diamine compound as an oil in 70-80% yield. 

1: 1H-NMR: (400 MHz, CDCl3, 298 K): δ = 7.09-7.04 

m (1H), 6.98-6.94 m (1H), 6.89 dd (J = 7.4 Hz, 1H), 3.28 

sep (1H, CH), 2.99 t (J = 5.7 Hz, 2H, CH2), 2.79 t (J = 5.7 

Hz, 2H, CH2), 2.31 s (3 H, CH3), 1.22 d (J = 6.9 Hz, 6H, 

CH3), 1.12 s (9H, CH3) ppm. 
13C-NMR: (100 MHz, CDCl3, 298 K): δ = 145.2, 

140.6, 130.5 (Cq), 128.4, 123.6, 122.2 (CH), 50.6 (CH2), 

50.2 (Cq), 42.8 (CH2), 29.2 (CH3), 27.5 (CH), 24.0 (CH3), 

18.9 (CH3) ppm. 

MS: 248 [M+] (12), 163 (100), 146 (40), 86 (60). 

2: 1H-NMR: (400 MHz, CDCl3, 298 K): δ = 7.08-6.98 

m (3H), 3.32 septet (2H, CH), 2.93 t (2H, CH2), 2.79 t 

(2H, CH2), 1.21 d (J = 6.8 Hz, 12H, CH3), 1.11 s (9H, 

CH3) ppm. 
13C-NMR: (100 MHz, CDCl3, 298 K): δ = 143.9, 

142.1 (Cq), 123.4, 123.3 (CH), 52.5 (CH2), 50.2 (Cq), 

42.7 (CH2), 29.2 (CH3), 27.6 (CH), 24.2 (CH3) ppm. 

MS: 276 [M+] (6), 191 (100), 86 (70). 

3: 1H-NMR: (400 MHz, CDCl3, 298 K): δ = 6.99-6.95 

m (2H), 6.79 dd (J = 7.4 Hz , 1H), 3.04 t (J = 6.6 Hz, 2H, 

CH2), 2.69 t (J = 6.6 Hz, 2H, CH2), 2.28 s (6H, CH3), 

1.79-1.69 m (2H, CH2), 1.10 s (9H, CH3) ppm.   
13C-NMR: (100 MHz, CDCl3, 298 K): δ = 146.3, 

129.2 (Cq), 128.6, 121.6 (CH), 50.1 (Cq), 47.3, 40.9, 32.1 

(CH2), 29 (CH3), 18.6 (CH3) ppm. 

MS: 234 [M+] (38), 148 (65), 134 (100). 

4: 1H-NMR: (400 MHz, CDCl3, 298 K): δ = 7.09-6.98 

m (3H), 3.28 septet (2H, CH(CH3)2), 2.92 t (2H, CH2), 

2.72 t (J = 6.6 Hz, 2H, CH2), 1.83-1.73 m (2H, CH2), 1.22 

d (J = 6.8 Hz, 12H, CH3), 1.09 s (9H, CH3) ppm. 
13C-NMR: (100 MHz, CDCl3, 298 K): δ = 143.6, 

142.5 (Cq), 123.6, 123.5 (CH), 51.1 (CH2), 50.2 (Cq), 

41.3 (CH2), 31.9 (CH2), 29.0 (CH3), 27.6 (CH), 24.3 

(CH3) ppm. 

MS: 290 [M+] (20), 204 (40), 190 (45), 174 (75), 146 

(50). 

 

General synthesis procedure for the diamido complexes 

of titanium and zirconium (5-12) 

n-Butyllithium (2mmol, 1.6M in hexanes) was added 

to 1mmol of the appropriate diamine compound dissolved 

in 50mL diethyl ether at -78°C, and the reaction mixture 

was stirred for 2 hours at room temperature. Then  

it was transferred to a metal salt suspension (1mmol)  

in 50mL diethyl ether at -78°C and the reaction mixture  

was stirred for 24 hours at room temperature. Diethyl 

ether was removed and toluene (100mL) was added.  

The mixture was filtered and the volume of the filtrate 

was reduced. The complex was precipitated by adding 

pentane.  The residue was filtered, washed with pentane 

and dried under vacuum to obtain the desired complex  

in 40% yield. 

5: 1H-NMR: (400 MHz, CD2Cl2, 298 K): δ = 7.33-

7.05 m (3H), 4.02 (br, 2H, CH2), 3.73 (br, 2H, CH2), 3.57 

septet (CH), 2.69 s (3H, CH3), 1.36 s (9H, CH3), 1.25 d (J 

= 6.6 Hz, 6 H, CH3) ppm. 
13C-NMR: (100 MHz, CD2Cl2, 298 K): δ = 144.0, 

132.9, 131.7 (Cq), 130.7, 130.6, 126.7 (CH), 58.3 (CH2), 

49.8 (Cq), 38.4 (CH2), 28.7 (CH), 26.1, 25.3, 20.1 (CH3) ppm. 

6: 1H-NMR: (400 MHz, CDCl3, 298 K): δ = .28-7.24 

m (1H), 7.17-7.13 m (2H), 4.34-3.14 m (6H), 1.52 s (9H, 

CH3), 1.47 d (3H, CH3), 1.22 d (3H, CH3) ppm. 
13C-NMR: (100 MHz, CDCl3, 298 K): δ = 159.7, 

138.7 (Cq), 128.5, 124.2 (CH), 64.1 (CH2), 58.9 (Cq), 

44.6 (CH2), 28.7 (CH3), 28.3 (CH), 24.1 (CH3) ppm. 

7: 1H-NMR: (400 MHz, CD2Cl2, 298 K): δ = 6.96-

6.93 m (2H), 6.80 dd (1H), 3.17-3.03 m (4H, CH2), 2.40-

2.33 m (2H, CH2), 2.27 s (6H, CH3), 1.46 s (9H, CH3) 

ppm. 
13C-NMR: (100 MHz, CD2Cl2, 298 K): δ = 133.9, 

132.9 (Cq), 130.7, 130.0 (CH), 58.0, 50.1 (CH2), 39.5 

(Cq), 26.2 (CH3), 23.7 (CH2), 19.4 (CH3) ppm. 
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8: 1H-NMR: (400 MHz, CD2Cl2, 298 K): δ = 7.22-

7.02 m (3H), 3.22 septet (2H, CH), 2.99-2.88 m (4H, 

CH2), 2.44-2.36 m (2H, CH2), 1.50 s (CH3), 1.20 d (CH3) 

ppm. 
13C-NMR: (100 MHz, CD2Cl2, 298 K): δ = 143.7, 

143.1 (Cq), 124.1, 123.2 (CH), 57.9 (CH2), 51.4 (Cq), 

42.5 (CH2), 28.2 (CH), 26.7, 24.8 (CH3) ppm. 

9: 1H-NMR: (400 MHz, CDCl3, 298 K): δ = 7.06-6.89 

m (3H), 3.56-3.09 m (1H, CH, 2H, CH2), 2.28 s (3H, 

CH3), 1.43 s (9H, CH3), 1.16 d (6H, CH3) ppm. 
13C-NMR: (100 MHz, CDCl3, 298 K): δ = 143.7, 

141.8, 131.6 (Cq), 128.6, 123.7, 123.4 (CH), 58.1 (Cq), 

45.7, 43.1 (CH2), 27.6 (CH), 26.2, 24.1, 19.6 (CH3) ppm. 

10: 1H-NMR: (400 MHz, CDCl3, 298 K): δ = 7.10-

7.00 m (3H), 3.52-3.00 m (6H (2H, CH + 4H, CH2)), 1.44 

s (9H, CH3), 1.18 d (12H, CH3 ) ppm. 
13C-NMR: (100 MHz, CDCl3, 298 K): δ = 143.0, 

142.4 (Cq), 124.3, 123.6 (CH), 57.2 (Cq), 47.5, 43.0 

(CH2), 27.9 (CH), 26.0, 24.4 (CH3) ppm. 

11: 1H-NMR: (400 MHz, CDCl3, 298 K): δ = 7.12-

7.07 m (1H), 7.05-6.98 m (2H), 3.32-2.85 m (6H, CH2), 

2.66 s (5H, CH3), 1.47s (9H, CH3) ppm. 
13C-NMR: (100 MHz, CDCl3, 298 K): δ = 134.7, 

132.3 (Cq), 130.0, 128.7 (CH), 57.2, 49.3 (CH2), 39.0 

(Cq), 25.8 (CH3), 23.5 (CH2), 19.3 (CH3) ppm. 

12: 1H-NMR: (400 MHz, CD2Cl2, 298 K): δ = 7.45-

7.15 m (3H), 3.68-2.96 m (8H (2H, CH + 6H, CH2)), 1.47 

s (9H, CH3), 1.29 d (12H, CH3) ppm. 
13C-NMR: (100 MHz, CD2Cl2, 298 K): δ = 143.5, 

129.9 (Cq), 130.9, 126.4 (CH), 58.5 (CH2), 52.8 (Cq), 

39.8 (CH2), 28.9 (CH), 26.3, 25.4 (CH3), 24.2 (CH2) ppm. 

 

RESULTS AND DISCUSSION 

Synthesis of diamine compounds 1-4 

To synthesize the diamine compounds, an excess of 

the desired dibromoalkane was heated at 100-105°C  

with the desired aniline in DMF in the presence of potassium 

carbonate. The resulting mixture was distilled to give  

the N-substituted bromoalkyl aniline derivative. These  

N-substituted bromoalkyl aniline derivatives were refluxed 

in THF with tertiary butylamine in the presence of 

potassium carbonate to give the required diamine 

compounds (Scheme 1). 

Compounds 1-4 were characterized by GC/MS and 
1H- and 13C-NMR spectroscopy. The 1H-NMR spectrum 

of compound 2 (Fig. 1) shows a multiplet for the  

aryl protons H5 and H6 at δ = 7.08-6.98 (m, 3H) ppm.  

A septet for the CH protons of the isopropyl groups (H7) 

appears at δ = 3.32 (septet, 2 H) ppm. Two triplets at  

δ = 2.93 t (2H) ppm and at δ = 2.79 t (2H) are assigned  

to the CH2 protons H2 and H1. The signal for the methyl 

protons of the isopropyl groups (H8) can be located  

at δ = 1.21 (d, J = 6.8 Hz, 12H) ppm while the signal  

at δ = 1.11 (s, 9H) ppm is assigned to the tertiary butyl 

group (H10). The signals for the NH protons are not visible. 

 

Synthesis of complexes 

For the synthesis of diamido complexes, the 

corresponding diamine compounds were deprotonated 

with two equivalents of n-butyllithium followed  

by the addition of one equivalent of titanium tetrachloride 

or zirconium tetrachloride to synthesize the diamido 

complexes 5-12 (Scheme 2). 

Complexes 5-12 were characterized by 1H- and 13C-

NMR spectroscopy. In the 1H-NMR spectrum of complex 

6 (Fig. 2), the signals for the aryl protons H6 and H5  

can be located at δ = 7.28-7.24 (m, 1H) and 7.17-7.13  

(m, 2H) ppm. The signals at δ = 4.34-4.05 (m, 1H), 3.94-3.70 

(m, 1H) and 3.61-3.14 (m, 4H) ppm are assigned  

to the CH protons of the isopropyl groups H7 and  

the CH2 protons H1 and H2. At δ = 1.52 (s, 9H, CH3) 

ppm the signal for the CH3 protons of tertiary butyl group 

H10 shows up. The signals for the two isopropyl groups 

appear at δ = 1.47 (d, 3H, CH3) and 1.22 (d, 3H, CH3) ppm. 

 

Optimized geometries of complexes 5-12  

Density Functional Theory (DFT) studies were carried 

out to optimize the geometries of complexes 5-12.  

The optimized geometries are given in Fig. 3. In the titanium 

complexes, the Ti-N bonds are in the range of 1.860-

1.869Å, and the Ti-Cl bonds are in the range of 2.249-

2.269Å. In the zirconium complexes, the Zr-N bonds are 

in the range of 2.028-2.038Å and the Zr-Cl bonds are  

in the range of 2.420-2.433Å. 

 

Ethylene polymerization 

The diamido complexes 5-12 were activated with 

MAO (M:Al=1:1000). The activated complexes  

were suspended in 250mL n-pentane and transferred to a 1 L 

autoclave. The homogeneous polymerization of ethylene 

was carried out at 60°C, with 10 bar pressure of ethylene, 

for 1 hour. The ethylene polymerization results and 
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1 (n = 2, R1 = Me,     R2 = i-Pr),    2 (n = 2, R1 = i-Pr,    R2 = i-Pr),     

3 (n = 3, R1 = Me,     R2 = Me),    4 (n = 3, R1 = i-Pr,    R2 = i-Pr) 

 

Scheme 1. Synthesis of diamine compounds 1-4. 

 

 

 

 

 

 

5  (M = Ti,  n = 2,  R1 = Me,  R2 = i-Pr;      6  (M = Ti,  n = 2,  R1 = i-Pr,  R2 = i-Pr;       7  (M = Ti,  n = 3,  R1 = Me,  R2 = Me 

8  (M = Ti,  n = 3,  R1 = i-Pr,  R2 = i-Pr;      9  (M = Zr,  n = 2,  R1 = Me,  R2 = i-Pr;      10 (M = Zr,  n = 2,  R1 = i-Pr,  R2 = i-Pr 

11 (M = Zr,  n = 3,  R1 = Me,  R2 = Me;      12 (M = Zr,  n = 3,  R1 = i-Pr,  R2 = i-Pr 

 

Scheme 2: Synthesis of complexes 5-12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: 1H-NMR spectrum of compound 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: 1H-NMR spectrum of complex 6. 

 

the DSC analysis data of the selected polymer samples  

is given in Table 1. 

Complexes 5-12/MAO systems show moderate 

activities towards ethylene polymerization. A comparison 

of the activities of titanium complexes 5 versus 6 and 7 

versus 8 shows that complexes 6 and 8 bearing two bulky 

isopropyl groups on the aniline moiety give higher yields 

of polyethylene as compared to 5 and 7 bearing methyl 

groups. A similar effect can be observed in analogous 

zirconium complexes 9-12. The possible explanation  

for this effect can be derived from the fact that the presence 

of toluene substantially reduces the olefin polymerization 

activity of diamido catalysts by coordinating to the 

catalyst center [34,40]. The bulky alkyl groups present  

7.2      6.4       5.6       4.8       4.0       3.2       2.4       1.6      0.8 

PPM 

7.6      6.8       6.0        5.2      4.4      3.6       2.8       2.0       1.2 

PPM 
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Fig. 3: Optimized geometries of complexes 5-12 (H atoms are removed for clarity, bond lengths are given in Å). 

 
on the ligand’s structure are expected to provide more 

protection to the catalyst center from approaching toluene 

molecules. Another prominent factor is the length of  

the chain bridging the two amido groups. Titanium complexes 

with ethylene bridged diamine ligands show higher 

activities than their zirconium analogues while zirconium 

complexes show higher activities with propylene bridged 

diamine ligands. The reason may be the formation of more 

stable complexes of the smaller titanium ion with ethylene 

bridged chelate while the comparatively bigger zirconium 

ion is expected to form more stable complexes with  

the larger propylene bridged chelates. 

Differential Scanning Calorimetric (DSC) 

measurements of the polyethylene samples produced  

with diamido catalysts, 5-11 indicated that the catalysts 

produced high-density polyethylene with melting points > 

135 ᵒC and high degrees of crystallinity (Table 1).  

For example, the polyethylene sample produced  

by the zirconium diamido catalyst, 11 showed 138.67 οC 

melting temperature and 0.45 degrees of crystallinity. 

 

Computational studies 

The Cossee-Arlman mechanism has been widely 

accepted to interpret olefin polymerization by both 

metallocene and non-metallocene catalysts [49] and often 

applied in computational studies of olefin 

polymerizations [50-56]. Energy profile for Cossee-

Arlman mechanistic studies of titanium complex 5  

is given in Fig. 4. Methylaluminoxane activates complex 5 

by extracting the two chloride ligands and alkylating  

with one methyl group to yield cationic complex 5Me+. 

The cationic complex 5Me+ bearing one vacant coordination 

site is the actual olefin polymerization catalyst. Ethylene 

molecule coordinates at the vacant coordination site of 

complex 5Me+ to give complex 5Me+-C2H4 that is  

4.7 kcal/mol more stable than the reactants. In 5Me+-C2H4 

the C-C bond of coordinated ethylene (1.352Å) is longer 

than the C-C bond in the free ethylene molecule 

(1.331Å). The ethylene coordinated complex 5Me+-C2H4 

undergoes ethylene insertion into M-CH3 bond via a four 

centered transition state (TS1) to yield complex 5Pr+. 

The activation energy for the ethylene insertion reaction 

is 12.2 kcal/mol and the propyl complex 5Pr+ is 4.5 kcal/mol 

more stable than the ethylene coordinated complex  

5Me+-C2H4. Coordination of another ethylene  

molecule with the complex 5Pr+ is followed by 
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Table 1: Polymerization and polymer data. 

Complex   Activitya (Kg PE/mol cat.h) ΔHm [J/mol] Tm [°C] Crystallinity (α) 

5 

 

205 107.2 135.33 0.37 

6 

 

263 - - - 

7 

 

106 125.1 138.17 0.43 

8 

 

190 114.1 139.83 0.39 

9 

 

110 113.8 139.17 0.39 

10 

 

116 128.1 137.83 0.44 

11 

 

172 130.5 138.67 0.45 

12 

 

209 - - - 

a) Polymerization conditions: 250mL n-pentane, 65°C, 10 bar ethylene, 1h. 

 

the ethylene insertion reaction. The catalytic cycle involving 

ethylene coordination and insertion goes on to produce 

alkyl chain. Finally, the produced alkyl chain is eliminated 

in the chain termination step. One of the widely accepted 

mechanisms for chain termination is the β-H transfer 

reaction [57]. The propyl complex 5Pr+ was selected  

as an example of the calculation of activation energy  

for the β-H transfer reaction. The calculated activation 

energy for the β-H transfer reaction (TS2) is 14.0 kcal/mol. 

Mechanistic studies were performed on catalysts 7, 9 

and 11. The calculated Gibbs free energies for ethylene 

coordination, activation energies for ethylene insertion 

and β-H transfer reactions of catalysts 5, 7, 9 and 11 are 

given in Table 2. The lower activity of zirconium catalyst 

9 compared with the analogous titanium catalyst 5 can be 

due to its high activation energies for ethylene insertion 
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Table 2: Gibbs free energies for ethylene coordination (∆Gr) and activation energies for ethylene insertion (Ea-TS1)  

and β-H transfer reaction (Ea-TS2) of catalysts 5, 7, 9 and 11. 

Catalyst ∆Gr (kcal/mol) Ea-TS1 (kcal/mol) Ea-TS2 (kcal/mol) 
Experimental results (Kg PE/mol 

cat.h) 

5 -4.7 12.2 14.0 205 

7 -1.7 12.2 13.9 106 

9 -5.7 16.8 14.4 110 

11 -3.0 15.5 12.5 172 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Energy profile for different ethylene polymerization steps of 5Me+ (values within parenthesis represent Gibbs  

free energy in kcal/mol). 

 

and β-H transfer reactions. The titanium complex 7 

shows lower activity than the zirconium catalyst 11 

although its activation energy for ethylene insertion is 

lower than 11. The reason can be the less favorable 

ethylene coordination reaction of catalyst 7 than 11. 

The optimized geometries of different stationary 

points along the ethylene polymerization pathway of 

catalyst 5 are shown in Fig. 5. In ethylene coordinated 

complex 5Me+-C2H4, the C1-Ti and C2-Ti bond lengths 

are 2.513 and 2.598Å and the C1-C2 bond length is 

1.352Å which is slightly longer than the C=C bond length 

in free ethylene (1.331Å). In the ethylene insertion 

transition state (TS1), the C1-C2 (1.407Å) and C3-Ti 

(2.115Å) bonds are longer than the corresponding C1-C2 

and C3-Ti (2.065Å) bonds in 5Me+-C2H4. In TS2 C1-Ti 

(2.279Å) and C2-H1 (1.903Å) bonds are longer than  

the corresponding C1-Ti (2.065Å) and C2-H1 (1.144Å) 

bonds in 5Pr+ whereas the C1-C2 bond is much shorter 

(1.338Å in TS2 vs 1.529Å in 5Pr+).  

 

CONCLUSIONS 

Eight complexes of titanium and zirconium with 

ethylene and propylene bridged diamido ligands bearing 

an aniline and a tertiary butyl moiety were synthesized. 

These complexes were activated with methylaluminoxane 

and tested for ethylene polymerization. All complexes 

showed moderate activities for ethylene polymerization. 

The introduction of bulky isopropyl substituents  

on the aniline, moiety increased the catalytic activity of both 

titanium and zirconium catalysts. The titanium catalyst 8 

possessing isopropyl substituents on the aniline moiety 

showed higher activity (190 kg PE/mol cat.h) than 
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Fig. 5: Optimized geometries of 5Me+, 5Me+-C2H4, TS1, 5Pr+ and TS2 (bond lengths are given in Å). 

 

catalyst 7 (106 kg PE/mol cat.h) with methyl substituents. 

Similarly, the zirconium catalyst 12 showed higher 

activity (209 kg PE/mol cat.h) than 11 (172 kg PE/mol 

cat.h). Another factor is the length of the chain bridging 

the two amido groups, the titanium complex 6  

with an ethylene bridge showed higher activity (263 kg 

PE/mol cat.h) than 8 (190 kg PE/mol cat.h) with a 

propylene bridge. On the other hand, the zirconium complex 

12 with a propylene bridge showed higher activity  

(209 kg PE/mol cat.h) than 10 (116 kg PE/mol cat.h)  

with an ethylene bridge. The DFT calculations  

for catalyst 5 indicated 12.2 kcal/mol activation energy 

for ethylene insertion into M-CH3 bond and 14.0 kcal/mol 

for chain termination via β-H transfer reaction. 
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