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ABSTRACT: In this research, by a simple and modified method, nanoporous of Ni(II) ion loaded  

Y-type zeolite (NNZ) was designed and applied as a novel highly efficient catalyst for the synthesis  

of quinoxalines, pyrido[2,3-b]pyrazines, and indolo[2,3-b]quinoxalines 3a-s. These heterocycles 

were obtained through a one-pot condensation reaction of aryl-1,2-diamines with 1,2-diketones  

or the isatin in the presence of the catalytic amount of Ni@zeolite-Y in ethanol or acetic acid at room 

temperature giving good to excellent yield. The structure of entitled catalyst was identified with  

FT-IR spectroscopy, Energy Dispersive X-ray (EDX), Scanning Electron Microscopy (SEM) and 

Brunauer-Emmett-Teller (BET) analysis. This method has some advantages such as the use of 

inexpensive, safety, stable and recyclable catalyst, high yields, short reaction times, and easy 

isolation of the product. It can be claimed that this approach in simplicity covers the goals of green 

chemistry. 
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INTRODUCTION 

Quinoxaline derivatives, although known compounds 

are old, due to the growing use in dyes, pharmaceuticals, 

and electrical/photochemical materials, they still have 

great importance among chemical and industrial 

researchers [1-9]. One of the interesting application of 

these derivatives is the presence of quinoxaline ring 

moiety in the structure of drugs such as Echinomycin, 

Levomycin, and Actinoleutin [10,11]. It is also known 

that if an active nucleus is linked to another, the resulting 

molecule may possess greater potential for biological 

activity. Of these compounds, the pyridopyrazines and 

indoloquinoxaline derivatives an important class  

 

 

 

of fused heterocyclic compounds, have attracted much 

synthetic attention for their wide range of pharmacological 

and therapeutic activities [12-19].  

Hitherto, in addition to traditional methods, the 

several procedures have been reported to synthesize these 

compounds through the condensational reaction of an  

aryl 1,2-diamine with a 1,2-dicarbonyl compound in refluxing 

or in the presence of an acid catalyst under various 

reaction conditions. Many catalysts such as molecular 

iodine [20] Ceric(IV) ammonium nitrate [21], polyaniline 

sulfate salt [22], Montmorillonite K-10 [23], Gallium 

triflate [24] MnCl2 [25], CuSO4·5H2O [26], Zn/L-proline [27],  
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Zirconium tetrachloride [28], Zeolite Y [29,30], Zirconium 

tetrakis (dodecyl sulfate) [31], (NH4)H2PW12O40 [32], 

Fe3O4@SiO2/Schiff base complex [33], CuCl2/MS 4A [34], 

NbCl5 [35], sulfated TiO2-P25 [36], CrCl2.6H2O [37], 

SBA-15/Cu-Schiff base complex [38] and La(AcO)3 [39] 

have been explored. Also, for the synthesis of  

indoloquinoxalines, pertaining to Pd(OAc)2, Et3N [40], 

Ce.MCM-41 [41], AcOH/reflux [42], sulfamic acid [43], 

benzyl triethyl ammonium chloride (BTEAC) [44],  

have been reported. However, each of these methodologies is 

having one or more disadvantages. Consequently,  

the introduction of new methods and/or further effort on technical 

improvements to overcome these limitations is still in demand.  

Recently, the zeolites as solid acid heterogeneous 

catalysts have attracted the growing attention of many 

chemists and activists of the chemical industry. These 

microporous materials have advantages such as proper 

acidity, thermal stability, non-toxic, easy handling, 

environmentally friendly. They also have qualities  

such as insolubility in all organic solvents, low cost and 

the facile conversion into nanoscale materials. The acidity 

and catalytic activity of zeolite can be affiliated to  

Lewis and Bronsted acid sites [45]. The dehydration 

reaction, can decrease the number of proton sites and 

increase the number of Lewis acid sites. The exchange or 

relocation of monovalent cations with polyvalent ions 

also creates strong Bronsted centers using the hydrolysis 

phenomenon [46]. These processes can be useful for 

catalytic reactions such as alcohol dehydration [47], 

acylation [48], esterification [49], oxidation [50], 

desulfurization [51], epoxidation [52], methylation [53], 

adsorption [54] and cyclization [55,56]. 

Following our interest researches on the development 

of new methods for the synthesis of important 

heterocyclic rings by solid nanocatalysts [56-58], in this 

paper, we intend to report the design and procurement of 

Ni@zeolite-Y nanoporous and its application as a highly 

efficient and safety catalyst for the synthesis of 2,3-diaryl 

quinoxaline, pyrido[2,3-b]pyrazine, and indolo[2,3-

b]quinoxaline derivatives via a one-pot condensation 

reaction of o-arylene diamines and 1,2-dicarbonyl 

compounds or substituted isatins in green conditions. 

 

EXPERIMENTAL SECTION  

Melting points were determined by the use of  

a Barnstead Electrothermal 9200 apparatus and they  

may be uncorrected. 1H NMR and 13C NMR spectra were 

recorded on Bruker spectrophotometer (300 and 500 MHz)  

in DMSO-d6, with Me4Si as an internal standard.  

IR spectra were acquired with a JASCO FT-IR 4200-A 

spectrophotometer. The mass spectra were recorded  

on an Agilent model 5975C VL MSD with a Triple-Axis 

Detector spectrometer at 70 eV. The shape, size and atom 

type of nano-particles were examined by SEM and EDX 

images recorded by Philips XL30. Nitrogen adsorption 

and desorption isotherms (BET analysis) were measured 

at -196°C by a Japan Belsorb II system after the samples 

were vacuum dried at 150°C overnight. The progress  

of reactions was routinely monitored by thin-layer 

chromatography on silica gel F254 aluminium sheets 

(Merck). All chemicals were used as obtained without 

further purification. 

 
Preparation of nano-Ni@zeolite Y  

To 2.0 g NaY zeolite in a 150-mL flask (obtained  

in our laboratory in accordance with the previously reported 

method [56]), was added an aqueous solution of NiCl2. 

2H2O (0.01 M, 100 mL) at room temperature.  

The mixture was stirred for 24 h and then filtered.  

The resulting precipitate was washed with water until  

the filtrate was colorless. The Ni/zeolite-Y (0.2 g)  

was handled with ultrasound for 1 h to provide nano size 

particles. The nano-catalyst was then used without further 

purification.  

 
The typical procedure for preparation of compounds (3a-s) 

The 1,2-arylenediamine, 1a-c or 2,3-diaminopyridine, 

1d (0.1 mmol) and the corresponding 1,2-diketones, 2a-d 

or the isatin derivatives, 2e-g dissolved in ethanol or 

acetic acid with constant stirring. Then a catalytic amount 

(3 or 10%, w/w) of nano Ni@zeolite–Y was added  

to the solution. The reaction mixture was stirred  

at room temperature for 5-30 minutes (Table 2). The reaction 

progress was monitored by TLC. After completion of  

the reaction, the used catalyst was collected by filtration 

and cold water was added to the filtrate to give the product. 

Then, the solid product was filtered and washed with cold 

ethanol/water to give the compounds 3a-s. In some cases 

for further purifications, the crude products were purified 

by recrystallization from EtOH (quinoxalines and 

pyridopyrazines) and AcOH/MeOH (indoloquinoxalins). 
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Spectroscopic data for selected compounds 

2,3-Diphenyl quinoxaline (3a) 

White solid, IR (KBr, υmax): 3056 (CH), 1544, 1477 

(C=N) 1440, 1345, 1218 (C=C), 1057, 977, 770, 698, 

598, 539 cm-1; 1H NMR (500 MHz, CDCl3) δH: 8.19 (dd, 

J = 3.40 Hz, J = 2.90 Hz, 2H, H-Ar), 7.77 (dd, J = 3.45 

Hz, J = 3.01 Hz, 2H, H-Ar), 7.53 (m, 4H, H-Ar), 7.37-

7.32 (m, 6H, H-Ar) ppm; 13C NMR (125 MHz, CDCl3) 

δC: 153.5, 141.2, 139.1, 129.9, 129.6, 129.3, 128.8, 128.3 ppm. 

 

6-Methyl-2,3-diphenyl quinoxaline (3b) 

White solid, IR (KBr, υmax): 2916 (CH), 1620 (C=N), 

1345 (C=C), 1058, 808, 700 cm-1; 1H NMR (300 MHz, 

CDCl3) δH: 8.09 (d, J = 8.40 Hz, 1H, HAr), 7.96 (s, 1H, 

H-Ar), 7.62 (q, J1 = 1.80 Hz, J2 = 6.90 Hz, 1H, H-Ar), 

7.53-7.51 (m, 4H, H-Ar), 7.35-7.30 (m, 6H, H-Ar), 2.62 

(s, 3H, CH3) ppm; 13C NMR (75 MHz, CDCl3) δC: 153.3, 

152.5, 141.3, 140.4, 139.7, 139.2, 132.3, 129.8, 129.8, 

128.7, 128.7, 128.6, 128.2, 128.0, 21.9 ppm. 

 

6-Nitro-2,3-dipenylquinoxaline (3c) 

Yellow solid. IR (KBr, υmax): 1659 (C=N), 1593, 1315 

(NO2), 1450, 1211 (C=C), 876, 718, 643 cm-1; 1H NMR 

(500 MHz, CDCl3) δH: 9.08 (d, J = 2.47 Hz, 1H, H-Ar), 

8.51 (q, J1 = 2.49 Hz, J2 = 6.65 Hz, 1H, H-Ar), 8.30 (d, J 

= 9.14 Hz, 1H, H-Ar), 7.57-7.54 (m, 4H, H-Ar), 7.44-

7.36 (m, 6H, H-Ar) ppm; 13C NMR (125 MHz, CDCl3) 

δC: 156.4, 155.7, 147.9, 143.5, 139.8, 138.3, 138.0, 130.8, 

130.0, 129.8, 129.7, 129.5, 128.6, 125.3, 123.4 ppm. 

 

2,3-Diphenyl pyrido[2,3-b]pyrazine (3d) 

Yellow solid. IR (KBr, υmax): 3056 (C-H), 1544 

(C=N), 1430, 1384, 1332 (C=C), 1068, 1019, 780, 697 

cm-1; 1H NMR (500 MHz, DMSO-d6) δH: 9.15 (d, J = 

3.52 Hz, 1H, H-Ar), 8.57 (dd, J = 1.32, 6.90 Hz, 1H, H-

Ar), 7.87 (q, J = 4.14 Hz, 1H, H-Ar), 7.49-7.31 (m, 10H, 

H-Ar) ppm; 13C NMR (125 MHz, DMSO-d6) δC: 156.5, 

155.3, 154.9, 150.0, 139.1, 138.7, 136.5, 130.6, 130.6, 

130.0, 129.9, 128.9, 126.8 ppm.  

 

Dibenzo[f,h]pyrido[2,3-b]benzopyrazine (3h)  

Yellow solid (partial to brown), IR (KBr, υmax): 1600, 

1497 (C=N), 1447, 1359, 1199 (C=C), 1023, 757, 722 

cm-1; 1H NMR (300 MHz, CDCl3) δH: 9.56 (d, J = 8.10 

Hz, 1H, H-Ar), 9.36-9.31 (t br, 2H, H-Ar), 8.70 (d, J = 

8.40 Hz, 1H, H-Ar), 8.58 (d, J = 8.10 Hz, 2H, H-Ar), 

7.83-7.72 (m, 5H, H-Ar) ppm; 13C NMR (75 MHz, 

CDCl3) δC: 154.7, 150.0, 145.2, 143.9, 138.4, 137.4, 

132.6, 132.4, 131.2, 131.0, 129.8, 129.6, 128.2, 128.0, 

127.5, 126.6, 125.0, 123.1, 122.9 ppm. 

 

Acenaphtho[1,2-b]pyrido[2,3-e]pyrazine (3l)  

White solid (partial to Yellow), IR (KBr, υmax): 3050 

(C-H), 1613, 1489 (C=N), 1435, 1375, 1298, 1205 (C=C), 

1097, 1034, 827, 771 cm-1; 1H NMR (300 MHz, CDCl3) δH: 

9.13 (d, J = 4.20 Hz, 1H, H-Ar), 8.57 (dd br, 2H, H-Ar), 

8.41 (d, J = 6.90 Hz, 1H, H-Ar), 8.16 (dd, J = 2.40, 7.50 Hz, 

2H, H-Ar), 7.90-7.83 (m, 2H, H-Ar), 7.74-7.69 (m, 1H, H-

Ar) ppm; 13C NMR (75 MHz, CDCl3) δC: 157.3, 155.0, 

152.4, 150.5, 138.3, 137.3, 136.5, 131.2, 131.0, 130.2, 

130.1, 129.8, 129.0, 128.6, 124.2, 123.3, 122.4 ppm. 

 

2,3-Bis-(4-methoxy phenyl)pyrido[2,3-b]pyrazine (3m) 

Yellow solid, IR (KBr, υmax): 2933 (C-H), 1605, 1513 

(C=N), 1447, 1384 (C=C), 1251, 1175 (C-O), 1023, 833 

cm-1; 1H NMR (300 MHz, CDCl3) δH: 9.12 (dd, J = 1.80, 

4.20 Hz, 1H, H-Ar), 8.47 (dd, J = 1.80, 6.60 Hz, 1H, H-

Ar), 7.68-7.62 (m, 3H, H-Ar), 7.55 (d, J = 8.40 Hz, 2H, 

H-Ar), 6.91-6.85 (m, 4H, H-Ar), 3.84 (d, 6H, 2CH3), 

ppm; 13C NMR (75 MHz, CDCl3) δC: 160.7, 155.7, 154.2, 

153.5, 149.8, 137.8, 135.8, 131.8, 131.2, 131.1, 130.7, 

124.7, 113.9, 113.6, 55.35, 55.30 ppm.  

 

6H-Indolo[2,3-b]quinoxaline (3n) 

Yellow solid, IR (KBr, υmax): 3420 (NH), 1650, 1617, 

1338 (C=N, C=C), 745, 669 cm-1; 1H NMR (300 MHz, 

DMSO-d6) δH: 12.04 (s, 1H, NH), 8.36 (d, J = 7.72 Hz, 

1H, H-Ar), 8.26 (d, J = 8.20 Hz, 1H, H-Ar), 8.08 (d, J = 

8.14 Hz, 1H, H-Ar), 7.82–7.68 (m, 3H, H-Ar), 7.60 (d, J 

= 8.04 Hz, 1H, H-Ar), 7.39 (t, J = 7.40 Hz, 1H, H-Ar) 

ppm; 13C NMR (75 MHz, DMSO-d6) δC: 146.2, 144.4, 

140.6, 139.0, 131.7, 129.5, 129.2, 127.9, 126.4, 122.7, 

112.4 ppm. 

 

2-Nitro-6H-indolo[2,3-b]quinoxaline (3o)  

Yellow solid, IR (KBr, υmax): 3435 (NH), 1640, 1594, 

1470, 1296 (C=N, C=C), 1522, 1310 (NO2), 1159, 810, 

748 cm-1; 1H NMR (300 MHz, DMSO-d6) δH: 10.93 (s, 

1H, NH), 7.96 (s, 1H, H-Ar), 7.64 (d, J = 5.72 Hz, 1H, H-

Ar), 7.37 (d, J = 5.94 Hz, 1H, H-Ar), 6.90–6.73 (m, 4H, 

H-Ar) ppm; MS (m/z, %): 264.1 (M+, 20), 254.1 (100), 

208.1 (65), 181.1 (18), 121.1 (20), 118.1 (22), 90.1 (18). 



Iran. J. Chem. Chem. Eng. Kalhor M. & Seyedzade Z. Vol. 38, No. 1, 2019 

 

30                                                                                                                                                                    Research Article  

9-Nitro-6H-indolo[2,3-b]quinoxaline (3q)  

Yellow solid, IR (KBr, υmax): 3426 (NH), 1712, 1655, 

1271 (C=N, C=C), 1617, 1445 (NO2), 1113, 749 cm-1; 1H 

NMR (300 MHz, DMSO-d6) δH: 12.57 (br, 1H, NH), 9.38 

(s, 1H, H-Ar), 8.30–7.32 (m br, 6H, H-Ar) ppm; MS 

(m/z, %): 264.0 (M+, 22), 254.1 (80), 208.1 (100), 181.1 

(45), 118.1 (18), 90.1 (50). 

 

7-Nitro-10H-pyrido[3',2':5,6]pyrazino[2,3-b]indole (3r) 

Red solid, IR (KBr, υmax): 3433, 3280 (NH), 1672, 

1614, 1482 1265 (C=N, C=C), 1575, 1340 (NO2), 1161, 

1114, 834, 798, 769, 746, 571 cm-1; 1H NMR (300 MHz, 

DMSO-d6) δH: 12.75 (br, 1H, NH, the NH proton 

disappeared on D2O addition), 9.63 (d, J = 2.52 Hz, 1H, 

H-Ar), 8.54–8.46 (m br, 2H, H-Ar), 9.63 (dd, J1 = 2.73 

Hz, J2 = 6.54 Hz, 1H, H-Ar), 7.74 (dd, J1 = 1.49 Hz, J2 = 

6.64 Hz, 1H, H-Ar), 7.58 (q, J = 4.47 Hz, 1H, H-Ar) 

ppm; 13C NMR (75 MHz, DMSO-d6) δC: 113.8, 116.0 

(2C), 123.7, 125.1, 126.8, 127.6, 129.3, 134.9 (2C), 

145.8, 154.3, 155.1 ppm. 

 

RESULTS AND DISCUSSION  

First, using the general procedure adapted with  

our previous studies, Ni@zeolite-Y was synthesized  

in our laboratory [52,57]. The primary production of 

Ni@zeolite-Y was under ultrasound to obtain nano-size. 

This nano-material was analyzed using different 

techniques which were synergistic and verified the 

synthesis of Ni@zeolite-Y (NNZ) nano-porous.  

The FTIR spectrum of zeolite and Ni-doped zeolite  

is depicted in Fig. 1. that showed, the broad peak  

in 3418 cm-1 region may be attributed to the hydroxyl 

stretching of hydrogen bonded internal silanol groups and 

O-H stretching of water, while the peak at 1634 cm-1 

corresponds to of bending mode of O-H group of water. 

Besides those, the peaks around 1017 to 722 cm-1  

are related to the symmetric and asymmetric stretching 

vibrations of the Si–O–Si groups, respectively.  

The displacement of IR bands to lower frequencies (red-shift) 

in the Ni@zeolite-Y spectrum, as compared with zeolite-

NaY, confirms the exchange of a number of Ni2+ (heavier 

cation) with Na cation [59]. The comparison of these  

two IR spectra (the band at 575 and 578 cm-1) also shows 

the structure of the final nano-porous remains preserved, 

respectively [60]. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1: The FT-IR spectrum (a) zeolite-Y and (b) Ni@zeolite-Y 

nano-porous. 

 
The SEM image of the NNZ which provide valuable 

information about the particle size and morphology of 

materials is shown in (Fig. 2, a). The particles size was 

mainly about 54-119 nm. In the Energy Dispersive X-ray 

(EDX), Peak appeared in the region of 7.5 eV confirmed 

the presence of nickel metal deposited on zeolite, 

respectively (Fig. 2, b). 

Atomic absorption spectroscopy was also carried out 

to determine the concentration of Ni(II) in the 

immobilized zeolite Y which was 3.56 mmol/g (21%). 

Nitrogen adsorption/desorption isotherms of the zeolite-Y 

and Ni(II)@zeolite-Y samples are shown in Fig. 2. 

Zeolite -Y exhibits type I isotherms whereas Ni@zeolite-

Y display type IV isotherms with a very small H1 

hysteresis loop in the range of 0.5–0.9 p/p0 according  

to the IUPAC classification. These isotherms demonstrate 

maintenance of the microporous structure of zeolite-Y 

after insertion of nickel(II) ions.  

The values of the structural parameters obtained from 

the BET analysis are summarized in Table 1. The glance 

at this table demonstrates that the surface area, pore 

volume and maximum pore volume of Ni(II)/zeolite-Y 

decreased with cation exchange of nickel (II) ion inside 

the micro pores of zeolite-Y.  

After proving the structure of the prepared 

nanoporous (NNZ), its catalytic activity was investigated 

in the synthesis of quinoxaline and pyridopyrazine derivatives 

via a condensation reaction between aryl-1,2-diamine or 

pyridine-2,3-diamine with 1,2-diketones or the isatin. 

In the following, to obtain the optimal method 

conditions, the effect of solvent and the amount of 
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Table 1: Porosimetery values for zeolite-Y and functionalized its 

Material Surface area (m2/g) Pore volume (cm3/g) Maximum pore volume (cm3/g)a 

Zeolite -Y 619.66 0.0667 0.3092 

Ni (II)@zeolite-Y 270.47 0.0536 0.0089 

a) At p/p° = 0.174699824 (estimated using the Horvath-Kawazoe method) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: SEM image (a) and EDX spectrum (b) of Ni(II)@zeolite-Y nanoparticles. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3: N2 adsorption/desorption isotherms of the zeolite -Y 

and Ni@zeolite-Y samples. 

 

efficient catalyst on the yield of the reaction was examined. 

From summarized data in Tables 2, 3 and 10 W% of 

NNZ as the best catalyst percentage in ethanol made  

the highest yield (95% and 90%) in a model reaction  

of benzene-1,2-diamine or pyridine-2,3-diamine  

with benzil at ambient temperature (Table 1, entry 3  

and entry 17). Also, the best yield (90%) for the model 

reaction of o-phenylenediamine and isatin at room 

temperature in acetic acid as the solvent with 10 W% 

catalysts was obtained (Table 1, entry 13). The synthetic 

pathway of the model reaction shown in Scheme 1.   

To display the scope and performance of the 

optimized nanocatalyzed construction of quinoxaline, 

pyrido[2,3-b]pyrazine, and indolo[2,3-b]quinoxaline 

heterocycles 3a-s, aryl-1,2-diamines, were subjected  

to the one-pot reaction with the 1,2-diketones or the isatin 

(Scheme 2). The results are presented in Table 2. 

For the investigation of the reusable property of the 

catalyst, it was applied in model reaction, under the same 

optimized conditions (Table 1, entry 3). Then the first 

reaction filtrated catalyst, recovered by refluxing  

in ethanol for 4h, drying at oven to 100 °C and reused  

in subsequent reactions with a small decreasing in activity 

even after the fourth run. The results are shown in Table 4. 

We also tested the recovered catalyst of the reaction  

by the atomic absorption spectroscopy (3.72 mmol/g, 22%) 

and no the Ni leaching to the solution was found. 

The results Table 3 indicate that the presence of 

electron-withdrawing (-NO2) substituent on the phenyl 

ring diamine, decreased the reaction yield relatively and 

substituted electron-donating (CH3) was the contrary. 

Except for 3r, other compounds 3a-q and 3s are known, 

being their physical and spectroscopic data in accordance 

with the reported in the literature [38, 42,43, 61-65]. 

The probable reaction mechanism for the synthesis of  

the products 3a-m is proposed in Scheme 3. Firstly,  

nano-Ni@zeolite activates the carbonyl group of the 
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Table 2: Results from the optimization of conditions for preparation of compounds 3a, 3d and 3n using different amounts  

of nano Ni@zeolite-Y as a catalyst and kind of solvents at room temperature. 

Entry Product Solvent Catalyst (%, w/w) Time (min) Yield(%)a 

1 

 

EtOH 5 5 95 

2 EtOH 10 5 86 

3 EtOH 3 5 95 

4 CH2Cl2 3 15 65 

5 MeOH 3 5 80 

6 1,4-Dioxane 3 10 20 

7 H2O
b 3 50 10 

8 EtOH 0 15 35 

9 

 

EtOH 3 25 45 

10 EtOH 5 20 52 

12 CH3COOH 5 15 69 

13 CH3COOH 10 15 90 

14 CH3COOH 15 15 72 

15 1,4-Dioxane 10 20 20 

16 CH3COOH 0 30 40 

17 

 

EtOH 5 35 55 

18 EtOH 10 25 90 

19 EtOH 15 25 90 

20 CH2Cl2 10 30 70 

21 EtOH 0 15 30 

a Isolated yield 
b The reaction was also performed under refluxing, but very little product was obtained 

 

 

 

 

 

 

 

 

Scheme 1: The optimization of conditions for the model reaction 

 

1,2-diketone to form intermediate (A), and then the  

aryl-1,2-diamine as a nucleophile attack it to afford  

the intermediate (B) that can have followed by catalytic 

oxidation for forming the intermediate (C). Eventually, 

the under second catalytic activating and undergoing 

intermolecular nucleophile attack and the loss of  

the second water molecule, cyclization of quinoxaline, 

pyrido[2,3-b]pyrazine, and indolo[2,3-b]quinoxaline 

rings 3a-s can be done. 

Comparison of the efficiency of nano-Ni@zeolite-Y 

in the formation of compounds 3a, 3d and 3n with those 

of several reported in the literature, indicates that this 
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Table 3: Synthesis of the quinoxaline, pyridopyrazine, and indoloquinoxalin derivatives 3a-s in the presence of  

3 and/or 10 W% nano Ni@zeolite-Y as catalyst in ethanol or/and acetic acid at room temperature. 

1,2-Diketone 
1,2-Diamine 

Product Time (min) 
M.p (oC) 

(Lit.)a 

Yield 

(%)b 
X R1 

 

CH H 

 

5 
123-125 

(121-123)62 
95 

CH Me 

 

7 
121-124 

(117-118)63 88 

CH NO2 

 

10 
185-187 

(185-187)63 
79 

N H 

 

25 
137-139 

(134-137) 63 
90 

 

CH H 

 

5 
221-223 

(223-225)62 
93 

CH Me 

 

10 
219-221 

(218-220) 61 
98 

CH NO2 

 

12 
259-261 

(259-260) 61 
89 

N H 

 

15 
215-217 

(221-223) 61 
82 
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Table 3: Synthesis of the quinoxaline, pyridopyrazine, and indoloquinoxalin derivatives 3a-s in the presence of  

3 and/or 10 W% nano Ni@zeolite-Y as catalyst in ethanol or/and acetic acid at room temperature. (Continued) 

1,2-Diketone 1,2-Diamine Product Time (min) 
M.p (oC) 

(Lit.)a 
Yield 
(%)b 

 

CH H 

 

7 
236-238 

(238-240)62 
77 

CH Me 

 

8 
229-231 

(228-229) 61 
87 

CH NO2 

 

5 
318-321 

(321-323) 61 
85 

N H 

 

10 
227-229 

(229-231) 61 
92 

 

N H 

 

30 
130-132 

(131-134) 61 
79 

 

CH H 

 

15 
289-291 

(288-289)42 
90 

CH NO2 

 

15 
244-246 

(363-365)64 
88 

CH Me 

 

15 
262-264 

(260-262)65 
91 
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Table 3: Synthesis of the quinoxaline, pyridopyrazine, and indoloquinoxalin derivatives 3a-s in the presence of   

3 and/or 10 W% nano Ni@zeolite-Y as catalyst in ethanol or/and acetic acid at room temperature. (Continued) 

1,2-Diketone 1,2-Diamine Product Time (min) 
M.p (oC) 

(Lit.)a 

Yield 

(%)b 

 

CH H 

 

10 
353-355 
(<320)42 

82 
 

N H 

 

25 <350 78 

 

CH H 

 

7 
286-288 

(222-224)43 

75 

 

a) Melting points in parentheses are reported in the literature [42,43, 61-65]. b) Isolated yield. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 2: Synthetic pathway for Compounds (3a–s). 
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Table 4: The nano-catalyst recovery study in the reaction of model under the optimized conditions (Table 1, entry 3). 

Entry Time (min) Yield (%)a 

1 5 95 

2 5 92 

3 10 88 

4 15 85 

a) Isolated yield. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 3. Proposed mechanism for the synthesis of Compounds 3a-s. 

 

the reaction is completed, in most cases, in shorter time 

with higher yield in green media and simple work-up 

(Table 5). 

The 1H NMR spectrum of compound 3r is considered 

to be simple, in which the resonance of NH proton  

of indole ring and the six aromatic protons appeared  

in the regions of 12.75 and 7.58-9.63 ppm. Also,  

the physical and spectroscopic (FT-IR, 1H-, 13C NMR  

and Mass spectra) data for a number of selected compounds 

confirmed the structures of the products. 

CONCLUSIONS  

Ni@zeolite-Y nanoporous was synthesized, 

characterized and employed as a mild and high efficient 

catalyst for the facile conversion of aryl-1,2-diamines, 

1,2-diketones, and the isatin to quinoxaline, pyrido[2,3-

b]pyrazine, and indolo[2,3-b]quinoxaline derivatives  

in EtOH or AcOH at room temperature. The procedure 

was demonstrated to be simple both in conducting the reaction 

and in isolating the products. The attractive features of 

this procedure such as good conversion, reusability 
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Table 5: Comparison of our results with some previously reported data for the synthesis of  

compounds 3a, 3d and 3n at room temperature. 

Product Catalyst (Loading, %) Solvent Time (min) Yield (%) [Ref] 

 

Phenol (20) EtOH/H2O 2 98 [59] 

Mont K-10 (10) H2O 150 100 [23] 

ZrCl4 (5) MeOH 5 100 [28] 

Gallium triflate (5) EtOH 5 99 [24] 

Zn/L-proline (10) AcOH 5 96 [27] 

Iodine (10) MeCN 5 95 [20] 

CuSO4·5H2O (10) MeOH/ H2O 5 97 [26] 

Ceric(IV) ammonium nitrate (5) H2O 10 98 [21] 

Nano-Ni@zeolite Y (3) EtOH 5 95 This Work 

 

Phenol (20) EtOH/H2O 225 91 [59] 

ZrCl4 (5) MeOH 60 96 [28] 

TiO2-P25-SO4
2- (5) EtOH 60 78 [36] 

BiCl3/SiO2 (5) MeOH 30 98 [66] 

Cu-Schiff-base/SBA-15 (10) H2O 120a 96 [38] 

Nano-Ni@zeolite Y (10) EtOH 25 90 This Work 

 

- AcOH 1440a 88 [42] 

Sulfamic acid (20) EtOH 60 83 [43] 

Ce.MCM-41 (30) - 60 75 [41] 

- AcOH 60a 80 [62] 

Nano-Ni@zeolite Y (10) AcOH 15 90 This Work 

a) It was in under refluxing 

 

and safety of nano-catalyst and easy work-up make  

it a beneficial manner for the simple synthesis of the target 

compounds. 
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