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ABSTRACT: This paper aims to investigate the robust control problem of Continuously Stirred Tank 

Reactors (CSTR). A CSTR is one of the most essential pieces of equipment in chemical processes, 

whose effects of highly nonlinear dynamic and external disturbances make it very difficult to control. 

Firstly, a novel finite-time sliding mode control is introduced that eliminates disturbance effects and 

ensures finite-time tracking. Secondly, to better compensate for disturbances and to improve controller 

performance, a finite-time disturbance observer is developed. Finally, an adaptive robust control 

method is introduced based on the proposed sliding mode control and the disturbance observer. 

Stability analysis is performed to investigate the finite-time tracking of the closed-loop system under 

the proposed controllers. Besides, to enhance the performance of the proposed controllers, the design 

parameters are tuned by the genetic optimization algorithm. Simulation results are produced to 

confirm the efficiency of the proposed methods in terms of tracking errors and convergence rates. 

The proposed finite-time sliding mode control and the adaptive finite-time sliding mode control with 

settling times of 1.73s and 1.71s as well as IAE of 0.509 and 0.4843, respectively, showed more 

desirable performance than other controllers. 
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INTRODUCTION 

A Continuous Stirred Tank Reactor (CSTR) is an 

important system used for converting reactants to products [1]. 

We can consider a CSTR as the opposite of an idealized 

batch or reactor [2]. Due to the complexity of this system 

and the effects of concentration and temperature, the 

control of this system is very challenging and crucial. 

Researchers have put a lot of effort into designing 

controllers able to keep the system stable in the presence 

of disturbances and uncertainties. The next subsection 

provides a detailed literature review. 

 

 

In many industrial applications, CSTRs work under 

specific operating conditions in which linear controllers  

are utilized to control the system around operating points [3]. 

For example, in a study [4], a PID controller was designed 

to stabilize a CSTR. In this study, a local linear model  

of the system was identified by a lazy learning algorithm, 

with a conventional PID introduced for the linearized 

system. In several studies, intelligent methods such as 

fuzzy logic were used as well in designing controllers. 

Another study introduced a fuzzy PID controller 
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for a CSTR, in which a nonlinear system was divided into three 

different linear regions and a PID controller was designed for 

each region [5]; the parameters of this controller were tuned by 

the integration of a genetic algorithm and fuzzy gain 

scheduling. In another study [6], the CSTR system was 

linearized in three equilibrium points, and the PID controller 

was designed for the system. In this study, the cost function was 

defined as an integral square tracking error, with the three 

coefficients of this controller tuned by an artificial bee colony 

algorithm. However, the main problem of this research was that 

the effect of disturbances was not considered. A study [7] 

introduced an adaptive fuzzy gain scheduling PID controller for 

a CSTR. The results of the mentioned controller were 

compared to those of the fuzzy gain scheduling PID and the 

conventional PID. Accordingly, it was reported that despite the 

same level of control inputs, adaptive fuzzy gain scheduling 

PID controllers performed better. In the reviewed studies, linear 

controllers were generally designed for linear models, yet the 

assumption of disturbances was not taken into account. 

Therefore, these controllers were not effective in controlling 

nonlinear systems affected by disturbances. In the simulation 

section, it is shown that linear controllers cannot control  

a nonlinear CSTR properly. Accordingly, nonlinear and robust 

controllers are needed to control the system more efficiently.  

In the following section, Sliding Mode Control (SMC) is 

introduced as one of the major robust and nonlinear controllers. 

Sliding mode control is an efficient robust control 

method that is widely applied to control nonlinear systems; 

Among the key advantages of this controller, one can allude 

to its rapid response, decoupling design procedure, and 

high robustness in the face of external disturbances [8,9]. 

Nevertheless, sliding mode control suffers from some 

major drawbacks, including infinite time convergence and 

chattering. Chattering is high-frequency oscillations 

appearing in the responses of the sliding mode control. 

This phenomenon is caused by the discontinuous control 

law of the sliding mode control, which may cause serious 

damage [10]. The sliding mode controller has been 

extensively employed in controlling industrial processes, 

in a study [11], a combination of sliding mode control  

and fuzzy logic was introduced to control nonlinear 

chemical processes. The proposed controller, despite its 

less dependence on process dynamics, showed the same 

performance as that of the normal sliding mode control. 

Despite the proper performance of the proposed controller 

and its less dependence on the system model, the main 

problem of the SMC (chattering) has not been fully 

investigated.  

In research [12], a novel second-order sliding mode 

controller was presented for a polymer electrolyte membrane 

fuel cell. The proposed controller was implemented  

in a cascade structure. The results showed the high 

accuracy of the introduced controller and the attenuation 

of the undesirable chattering phenomenon. In a study [13], 

a terminal sliding mode control was proposed for a CSTR. 

In this study, finite-time stability was achieved and a state 

observer was developed to estimate the internal states of 

the system based on output measurements. Besides, it was 

assumed that the upper bound of the disturbance was known, 

which is an unrealistic assumption. Another study [14] 

introduced a novel event-triggered sliding mode controller 

for a CSTR. This study showed that the proposed method 

effectively reduced the computational burden of the 

controller. However, in this study, the chattering problem 

and response rates were not considered. In designing 

robust controllers (especially sliding mode controllers), 

controller performance can be significantly improved  

by estimating the upper bound of the disturbances [15]. 

Accordingly, various studies proposed Disturbance 

Observers (DO).  

Thus use of disturbance observers has recently become 

common in controlling nonlinear systems, as these estimators 

are capable of estimating lumped disturbances [16]. Thus, 

different types of disturbance observers have been 

introduced to make an appropriate estimate of 

disturbances. In research [17], a disturbance observer  

was developed for a grid-connected doubly fed induction 

generator to decrease uncertainty effects on the system. 

Moreover, the effectiveness of disturbance observers has 

been validated by experimental tests. Research [18] 

introduced a disturbance observer for estimating fast-

varying disturbances for simple linear systems. In addition, 

a systematic approach was introduced to tune the parameters 

of the observer. In the proposed DO, conservative 

assumptions were avoided. The integration of the sliding 

mode control and disturbance observers has attracted 

much attention from researchers [19]. In a study [20],  

an active Disturbance Rejection Control (ADRC)  

was proposed, which was isolated for a wind-diesel hybrid 

power system. Firstly, a disturbance observer was 

produced to estimate source-load disturbances of the 

system, and secondly, the adaptive sliding mode control 
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was applied to the system to regulate voltage and 

frequency. In another study [21], a novel nonlinear 

disturbance observer was proposed for a wind energy 

conversion system to estimate uncertainties. Next,  

the effects of the estimated uncertainties were 

compensated by a sliding mode controller. A study [22] 

investigated the anti-disturbance speed control for a high-

torque low-speed PMSM. In this study, a second-order 

disturbance observer was introduced to estimate load 

changes in a PMSM, and a second-order sliding mode 

controller was presented to control the speed. 

 

CONTRIBUTIONS AND PAPER ORGANIZATION 

According to the literature review presented above,  

in most of the studies, linear controllers were employed  

to control this system. However, disturbance effects were 

not considered in most of these studies. The main research 

gap in controlling CSTRs is that nonlinear robust 

controllers have been rarely employed in controlling this 

system and eliminating external disturbances. In the 

present study, a novel finite-time sliding mode control was 

introduced to control CSTRs. Moreover, external 

disturbances affecting the system were estimated by  

a novel finite-time disturbance observer. In addition,  

an adaptive finite-time sliding mode controller was introduced 

based on the disturbance observer. Contributions of this 

paper are listed as follows: 

● A novel sliding mode control was designed for  

a CSTR, with its stability, proved using the Lyapunov 

theory. Unlike research [14], this sliding mode control 

ensures finite-time convergence. The main innovation  

in designing this controller was the proposed sliding 

surface, which could ensure convergence in a finite time.  

● Unlike studies [13, 23], in the proposed control 

method, the chattering phenomenon was eliminated by 

designing a dynamic control input so that a smooth control 

input was achieved.  

● A novel finite-time disturbance observer was developed 

to estimate the upper bound of external disturbances. 

● An adaptive sliding mode control (by the integration 

of the proposed finite-time sliding mode control and the 

disturbance observer) was introduced for CSTRs, which 

ensures more accurate tracking. 

● Upon employing the finite-time controller and the 

disturbance observer, the finite-time stability of the closed-

loop system was proved. 

 
Fig. 1: Schematic of a CSTR. 

 

● Finite-time stability of the proposed controllers made 

it possible to adjust the convergence time of the controller 

according to the limitations of the system. 

● The validity of the proposed control methods  

was verified through comparative simulations. 

The rest of the paper is organized as follows: First, 

the nonlinear model of CSTRs is introduced, with some 

important assumptions provided; next, a finite-time 

sliding mode controller, a finite-time disturbance 

observer, and an adaptive sliding mode controller are 

introduced for CSTRs, with their stability investigated 

using the Lyapunov theory. In the results and discussion 

section, simulations are presented to validate the 

theoretical results. Finally, the paper is concluded. 

 

THEORETICAL SECTION 

Problem formulation and preliminaries 

The nonlinear non-dimensional model of a CSTR (as shown 

in Fig. 1) is presented in a state space form as follows [13]: 

x /(x / )
ax x D ( x )e d

+
= − + − −2 2 1

1 1 1 11                             (1) 

x /(x / )
a

c T

x x BD ( x )e

(x x ) u d

y x

+
= − + − −

 − + +

=

2 2

0

1
2 2 1

2 2 2

2

1

 

Where 𝑥1 , 𝑥2 ∈ ℝ  are the system states representing 

dimensionless composition and temperature, respectively. 

Besides, y is the process output and 𝑑1 , 𝑑2 ∈ ℝ represent 

the system disturbance.  

Tables 1 and 2 show descriptions of other parameters. 

Remark 1. In this study, the coolant temperature was 

selected as the control input, and the CSTR temperature as 

the output. The main reason for this selection was that it
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Table 1: CSTR Parameters and their descriptions [24]. 

Description Parameter Unit 

Reactor concentration cA kmol/m3 

Inlet concentration cAf kmol/m3 

Reactor temperature T K 

Activation energy E j/mol 

Universal ideal gas constant R j/mol.k 

First-order reaction rate constant k0 min-1 

Steady- state flow rate F m3/min 

Reagent density  g/m3 

Specific heat capacity Cp cal/°Cg 

Reaction heat H cal/kmol 

Coolant density c g/m3 

Specific heat capacity of coolant Cpc cal/°Cg 

Volume of the CSTR V m3 

Coolant flow rate Fc m3/min 

 

Table 2. Dimensionless parameters of the CSTR [24]  

Description Dimensionless parameter 

Dimensionless composition x1 = (cAf0-cA)/cAf0 

Dimensionless temperature x2 = (T-Tf0)/Tf0 

Damkohler number Da = k0exp(-V)/V 

Dimensionless control input u = (Tc-Tc0)/Tf0 

Activation energy  = E/RT0 

Dimensionless time t = t' (F0 / V) 

Adiabatic temperature rise B= (-H)cAf0 / cpTf0 

Heat transfer coefficient  = hA/cpF0 

Feed composition disturbance d1 = (cAf – cAf0) / cAf0 

Feed temperature disturbance D2 = (Tf – Tf0) / Tf0 

 

was critical to control the temperature; otherwise,  

a second reaction might happen in the reactor [25].  

Remark 2. Due to the nonlinear dynamics of the 

system (1) and input disturbances, the linear controllers 

could not control this system efficiently. As a result, 

nonlinear robust controllers needed to be designed. 

Remark 3. In the case of real-time situations, 

unmodeled dynamics or uncertainties with the input 

disturbance can form a lumped disturbance which  

can be estimated and its effect can be removed by the 

robust controllers [16]. 

Remark 4. The first equation of the dynamic Eq. (1) 

was a zero dynamic, so the stability of state 1 

(composition) was still important and had to be checked. 

Assumption 1. Process states were measurable and 

fully available in this study. 

Assumption 2. The system disturbances and their 

derivatives were unknown and bounded. 

d    1 1 12
0                                                         (2) 

d    2 2 22
0  

Remark 5. According to remark 4 and assumption 2,  

a state feedback control makes the zero dynamics of  

the process stable, with the bounded disturbance ( 1d )  

not affecting zero dynamics stability [26]. 

Control objective. The main objective of this study 

was to design a controller so that the output would track 

the reference trajectory in a finite time; accordingly,  

the error is defined as: 

refe y y= −                                                                      (3) 

It converges to zero in a finite time. 

To better understand the control procedure of  

a system, Fig. 2 shows the schematic representation of  

a conventional closed-loop process control system. 
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Fig. 2: Closed-loop process control configuration. 

 

Main results 

In this section, the design process of a novel sliding 

mode control and a disturbance observer is proposed  

for a CSTR to ensure tracking. 

 

Finite-Time Sliding Mode Control (FSMC) 

In this subsection, an SMC is proposed for the CSTR, 

with its stability and finite-time convergence studied. 

Lemma 1[27]. For the system: 

n

x x

x x

x u

=

=

=

1 2

2 3                                                                           (4) 

Next, the following control law is applied:  

u k sgn(x ) x


= − −11 1 1                                                  (5) 

n

n n nk sgn(x ) x k sgn(x ) x
 
− −2

2 2 2  

where sgn(.)  is the sign function defined as 

c
sgn(c)

c


= 

− 

1 0

1 0
 and constants ik  ( 1,...,i n= ) are 

selected so that 1

1( ) 0n n

np s s k s k−= + + + = is Hurwtiz 

and i  ( 1,...,i n= ) are selected as follows: 

n

n

i i
i

i i

( , ) ( , )

+

+
−

+


 =

 =   −  
  
 =

 −

1

1
1

1

1

1 1 0 1

2

                                   (6) 

System (4) is finite-time stable. 

Theorem 1. Considering system (1) as well as 

assumptions (1) and (2), the tracking error converges  

to zero in a finite time by designing the following control 

law: 

T refu (F y k sgn(e) e


= − − + +


1

1

1
                               (7) 

k sgn(e) e k sgn(s))

+2

2  

where 

x /(x / )
a cF x BD ( x )e (x x )

+
= − + − − −2 2

0

1
2 1 2 21           (8) 

Proof:   

The following sliding surface is designed:  

t

t
s e e(t ) k sgn(e) e k sgn(e) e dt

 
= − + +

1 2

0
0 1 2           (9) 

In sliding surface (9), using term 0( )e t , the reaching 

phase is eliminated, with s  being equal to zero from  

the beginning. The time derivative of the sliding surface  

is obtained as follows:  

s e k sgn(e) e k sgn(e) e
 

= + + =1 2

1 2                         (10) 

T refF u d y k sgn(e) e k sgn(e) e
 

+ + − + +1 2

1 1 2  

The Lyapunov stability theorem is used to verify the 

stability of the closed-loop system using control input (7) 

and sliding manifold (9). Thus, a positive definite 

Lyapunov function is considered as follows: 

V s= 21

2
                                                                       (11) 

The time derivative of the Lyapunov function is as follows:
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T refV ss (F u d y= = + + − +2                                     (12) 

k sgn(e) e k sgn(e) e )s
 
+1 2

1 2  

By substituting control input (7) for (12), it will yield: 

V ss ( k sgn(s) d )s k s ds= = − + = − +2                         (13) 

According to assumption 2:  

V k s d s k s s= − +  − + 2 2                                       (14) 

and for 2k   + : 

V s −                                                                      (15) 

This indicates that the time derivative of the Lyapunov 

function is negative definite, with the proof established. 

Therefore, the sliding surface remains zero. 

t

t
s e e(t ) k sgn(e) e k sgn(e) e dt

 
= − + + =

1 2

0
0 1 2 0   (16) 

Thus:  

s e k sgn(e) e k sgn(e) e
 

= + + =1 2

1 2 0                     (17) 

According to Lemma 1, the closed-loop system is 

finite-time stable. It is worth noting that most conventional 

controllers have a long convergence time. However, the 

convergence time in the proposed controller was finite and 

adjustable; therefore, it could be adjusted according to 

system limitations. 

Remark 6. Most conventional controllers have a long 

convergence time. However, in the proposed controller the 

convergence time is finite and adjustable therefore it can be 

adjusted as needed according to system limitations. 

Remark 7. Unlike the terminal sliding surface [28], the 

presented sliding manifold did not suffer from singularity 

problems, being one of the significant advantages of this 

finite-time controller. 

Remark 8. An integral sliding surface was presented 

in the proposed control method, which could be simply 

differentiated from the sliding surface. 

Remark 9. In the proposed control method, in addition 

to the finite-time convergence, the main problem of the 

sliding mode control method, i.e. chattering, was tackled. 

In this method, because of the particular form of the sliding 

surface, a dynamic control input was designed. Thus,  

by integrating it, a continuous control law  

was obtained, with the chattering phenomenon eliminated. 

In the introduced sliding mode controller, we needed  

to differentiate the expression 

2 2

0

/ ( /1 )

2 1 2 2(1 ) ( )
x x

a cF x BD x e x x
 +

= − + − − − ,  

which affected the performance of the controller as  

the derivative action significantly increased the impact  

of the measurement noise. To solve this problem, the following 

two-part control law is presented by applying the control law  

in two steps. 

The two-part finite-time sliding mode control law  

is presented as follows: 

x /(x / )
T au ( x BD ( x )e

+
= − − + − −


2 2 1

1 2 1

1
1                   (18) 

c ref(x x ) y ) − −
02 2  

Tu (k sgn(e) e k sgn(e) e k sgn(s))
 

= − + +


1 2

2 1 2

1
   (19) 

T T Tu u u= +1 2                                                              (20) 

Equations (18) to (20) are actually presenting one 

equation. The control law is a combination of the two 

control laws (18) and (19), and none of them is an 

independent controller. The control law is written in the 

form of equations (18) to (20), for readers to have a better 

understanding of the controller design. 

 

Proof: 

The proof can be established in Appendix A. 

Finite-time disturbance observer 

In this subsection, a sliding mode disturbance observer 

is provided to estimate the upper bound of the disturbance 

affecting the system. By providing this DO and estimating 

the upper bound of the disturbance, a more accurate 

controller could be achieved.  

To simplify the design, a new notation is defined as follows: 

sig (x) x sgn(x)
 =                                                    (21) 

The estimation errors are defined as follows: 

ˆˆe x x , e d d= − = −1 2 2 2 2                                     (22) 

Where 2x̂ , d̂   are the estimations of 2x  and d , 

respectively. Besides, the following sliding surface is 

designed for designing the disturbance observer: 
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s e ( )e s ig (e )


= + + + =2
1 1 1 11 0                               (23) 

Where 1 0   and 20.5 1   are constants. 

The disturbance observer is designed as follows:  

x /(x / )
aˆ ˆx ( )x BD ( x )e

+
= − + + − +2 2 1

2 2 11 1                  (24) 

c T
ˆx u d

d̂ (e )e sgn(s)

+ +

=  +

02

1 1 1

 

Where 1  is a positive constant, and 

2 1

1 1 2 1( )e e


  
−

= is a nonlinear function. 

The error dynamic of the introduced disturbance 

observer is determined as follows: 

e ( )e e= − + +1 1 21                                                       (25) 

e d (e )e sgn(s)= − −2 2 1 1 1  

Theorem 2. considering system (1), assumptions (1) 

and (2), sliding manifold (23), and disturbance observer 

dynamic (24), error dynamic (25) is asymptotically finite-

time stable, and the finite-time disturbance estimation is 

obtained. 

 

Proof: 

To prove the stability of error dynamic (25), the 

following positive definite Lyapunov function is proposed: 

V s= 21

2
                                                                       (26) 

By differentiating Lyapunov function (26) with respect 

to the time, we have:  

V ss=                                                                          (27) 

s[ ( )e e ( )e e (e )]

s[d e e sgn(s) e e ]

( ) s

 −

 −  −

= − + + + + + 

= −  − + 

  −

2

2 2

1

1 2 1 1 2 1 1

1 1

2 1 2 1 1 1 1 2 1 1

2 1

1 1

 

It is negative definite for 1 2  . Now, the finite-time 

estimation of the proposed DO is investigated.  

Lemma 2 [29]. For the system: 

𝑥̇ = 𝑓(𝑥), 𝑥 ∈ ℝ
𝑛

                                                       (28) 

It is supposed that there is a positive definite and 

differentiable Lyapunov function with constants 

0,0 1p    so that: 

V(t) pV (t) −                                                            (29) 

Next, the system is finite-time stable, and the 

convergence time is determined as follows:  

V (t )
T t

p( )

−

= +
−

1
0

0
1

                                                        (30) 

where 0t  is the initial time. 

Considering inequality (27), we will have: 

/V ( )V −  − 1 2
1 2                                                       (31) 

where according to (29), 1 2p  = − . As a result, 

according to Lemma 2, estimation errors reach the sliding 

manifold in the finite time. 

Lemma 3 [30]. It is supposed that a positive definite 

Lyapunov function satisfies the following inequality: 

V(t) p V (t) p V(t) t t − −  1 2 0                            (32) 

where 0 1   and 1.2p  are arbitrary positive 

constants. Next, the Lyapunov function converges to zero 

in the following finite time: 

p V (t ) p
T t ln

p ( ) p

− +
= +   −  

1
2 0 1

0
2 1

1

1
                      (33) 

According to (31), it is proved that 0s = , so we  

will have:  

s e ( )e sig (e )


= + + + =2
1 1 1 11 0                                (34) 

To check the stability of (34), the following Lyapunov 

function is considered: 

V e= 2
1

1

2
                                                                      (35) 

The derivative of the Lyapunov function (35) is:  

V e e ( ( )e sig (e ))e


= = − + − =2
1 1 1 1 1 11                    (36) 

( )/ ( )/
( )e sig (e ) ( )V V

 +  +  +
− + − = − + − 2 2 21 1 2 1 22

1 1 1 11 2 1 2  

Due to Lemma 3, the errors converge to zero in the 

following finite time: 

T T= +2 1                                                                      (37) 

( )/ ( )/

( )/

( )V (T )
ln( )

( )( ( ))

−  +  +

 +

+ + 

+ −  + 

1 2

2

1 1 2 1 2
1 1

1 2
1 1

2 1 21

1 2 1 2
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Fig. 3. Block diagram of the AFSMC for the CSTR 

 
Accordingly, the finite-time estimation of the proposed 

disturbance observer is proved. 

 

Adaptive Finite-Time Sliding Mode Control(AFSMC) 

based on disturbance observer  

In this subsection, an adaptive control law, based on 

the proposed disturbance observer, is proposed, with its 

performance investigated. Fig.3 shows the block diagram 

of the proposed adaptive controller. 

Theorem 3. This theorem considers system (1), sliding 

surface (9), and finite-time disturbance observer (24) by 

applying the following adaptive control laws: 

x /(x / )
T au ( x BD ( x )e

+
= − − + − −


2 2 1

1 2 1

1
1                   (38) 

c ref
ˆ(x x ) y d) − − +

02 2  

Tu (k sgn(e) e k sgn(e) e k sgn(s))
 

= − + +


1 2

2 1 2

1
   (39) 

For positive k , the output can asymptotically track the 

reference in a finite time. 

 

Proof: 

The proof of theorem 3 can be found in Appendix B. 

Remark 10. Similar to the finite-time sliding mode 

control presented in theorem 1, the adaptive finite-time 

sliding mode control does not suffer from an undesirable 

chattering phenomenon due to the dynamic form of the 

control law. 

 
RESULTS AND DISCUSSION 

Simulation results 

In this section, the efficiency of the designed 

controllers is investigated by simulations and comparisons 

with the Sign Integral Terminal Sliding Mode Control 

(SITSMC) [13], PID control, and Terminal Sliding Mode 

Control (TSMC) [28]. A continuous stirred temperature 

reactor with parameters 8B = , 0.3 = , 20 = , 

0.078aD = , and 2 0cx =  is considered in this section. 

Besides, to achieve the best performance of the controllers 

and realistic comparison the parameters of all controllers 

are tuned by the genetic optimization algorithm. The 

genetic algorithm as one of the most powerful evolutionary 

optimization methods can ensure the optimal performance 

of controllers in control of this system. In addition, to 

facilitate the controller design for the CSTR, a flow chart 

is provided for the design and optimization of the proposed 

controller in Fig. 4. 

The simulation results are presented in three sections 

as follows:  

I. The proposed Finite-Time Sliding Mode Control (FSMC) 

method is implemented on the CSTR, with its performance 

investigated and compared to that of the SITSMC [13], 

PID control, and TSMC [28]. 
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Fig. 4: Flow chart for the controller design and optimization. 

 

II. The performance and effectiveness of the 

introduced disturbance observer are investigated via 

simulations.  

III. The performance of the designed adaptive 

controller (AFSMC) is evaluated in the presence of the 

disturbance, with its performance compared to that of the 

FSMC, PID control, and TSMC. 

The simulation was provided by Matlab/Simulink, and 

the Simulink model is illustrated in Fig. 5. 

In Fig. 6, the simulation results of the CSTR system are 

presented under finite-time sliding mode control. 

Fig. 6 shows the performance of the finite-time sliding 

mode control, with the results compared to those of the 

SITSMC, PID, and TSMC. Accordingly, 1x  is stable 

under the finite-time sliding mode control, PID, TSMC, 

and SITSMC, which converges to a small value. On the 

other hand, 2x converges to the setpoint under all 

controllers. The convergence rate of the proposed FSMC 

is higher than that of the SITSMC and PID controllers and 

almost equal to TSMC so that the settling time for the 

proposed controller is 1.73s, while for controllers 

SITSMC, PID, and TSMC, it amounts to 4.23, 1.9, and 

1.7s, respectively. Results from comparing the controllers’ 

performance (the IAE criterion) show that the proposed 

controller with an error of 0.509 has a very accurate 

performance (Table 3 shows a detailed comparison of the 

controllers). According to the control input signal,  

it becomes clear that the proposed control method has  

a relatively smooth signal, while the chattering phenomenon 

is seen in the SITSMC case, which is very undesirable. 

In the following part, the performance of the 

disturbance observer is investigated. Accordingly, three 

different signals are applied to the CSTR as disturbances, 

with the performance of the disturbance observer in 

estimating the signals evaluated. The signals affecting  

the system are as follows: 

d a u(t ) u(t )= − − −2 2 4                                                (40) 

 

 

d b sin( t) u(t ) u(t )

d c (t ) u(t ) u(t )

=  − − −

= − − − −

2

2

5 7

8 8 9
 

Where ( )u t  is the step signal. Fig. 7 presents the 

simulation results of the finite-time disturbance observer 

performance in estimating disturbances (40). 
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Fig. 5. The Simulink model of a CSTR under AFSMC control. 

 

 
Fig. 6: Simulations results of the CSTR under finite-time sliding mode control compared to the SITSMC, PID, and TSMC. 

 

As Fig. 7 shows, the disturbance observer is able to 

accurately estimate the disturbances. In addition, it verifies 

the effectiveness of the disturbance observer. 

In the following section, the performance of the 

proposed adaptive finite-time sliding mode control is 

investigated. To this end, it is assumed that the following 

disturbance signal affects the system: 

d u(t ) u(t )= − − −1 1 2                                                   (41) 

d u(t ) u(t )= − − −2 5 7  

Simulation results of the proposed control (AFSMC) 

are compared to those of the finite-time sliding mode 

control, PID, and TSMC.  

As Fig. 8 shows, as far as the disturbance is not applied to 

the system, the results under two controllers AFSMC and 

FSMC are relatively similar. However, as the zoomed part of 

the figure shows, the adaptive control method has a better 

performance in eliminating the disturbance effect. As one  

can see, under the finite-time sliding mode control, the output 

cannot track the reference signal well, while the 
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Fig. 7: Simulation results of the proposed adaptive disturbance observer. 

  
Fig. 8: Simulation results of the proposed adaptive finite-time sliding mode control compared to the FSMC, PID, and TSMC. 

 

same system under the Adaptive Finite-Time Sliding Mode 

Control (AFSMC) eliminates the effect of the disturbance 

very well. Besides, it is quite clear that the proposed AFSMC 

is more efficient than the PID control and TSMC  

as the ITAE criterion is 0.249 for the AFSMC, but it is 1.58 

and 0.65, for the PID and TSMC, respectively.  

The numerical results are summarized in Table 3  

to investigate the effectiveness of the proposed controllers. 

In Table 3, the proposed control methods are compared 

in terms of speed, accuracy, and control efforts. 

Accordingly, the performance of the FSMC is faster  

in comparison with other controllers and almost equal to 

TSMC. But in case of accuracy, the proposed FSMC 

produces smaller IAE and ITAE values than other 

controllers which indicates the higher accuracy of this 

controller. On the other hand, in the presence of the  
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Table 3: Comparison of the performance of the proposed controllers. 

Controller Settling Time (sec) IAE ITAE Control Effort 

FSMC 1.73 0.509 0.265 8.9 

SITSMC 4.23 1.83 1.81 12.24 

PID 1.9 1.58 1.18 11.47 

TSMC 1.7 1.05 0.758 9.87 

AFSMC in the presence of the disturbance 1.71 0.4843 0.249 10.56 

FSMC in the presence of the disturbance 1.73 0.5098 0.281 18.45 

PID in the presence of the disturbance 1.98 1.648 1.58 18.08 

TSMC in the presence of the disturbance 1.68 0.538 0.65 17.58 

 

disturbance, the AFSMC follows the reference signal 

faster, and by properly removing the disturbance effect,  

a more accurate result will be achieved. As it can be seen, 

by comparing the control effort we can see that  the proposed 

controllers show effective performance with less control 

effort in comparison with SITSMC, PID and TSMC. 

Remark 11. With changes in behavior of the physical 

application or CSTR case, two things may happen with 

changes in system model, a new controller based on the 

new model can be designed. But it is much more likely that 

the system parameters will change, If the new parameters 

are known, the proposed control law can be modified. 

Otherwise these parametric uncertainties and external 

disturbances (lumped disturbance) can be controlled by the 

proposed robust controller and the effect of these 

uncertainties can be removed.  

 

CONCLUSION 

In this paper, a novel finite-time sliding mode 

controller was introduced for a continuous stirred tank 

reactor. Besides, a modified version of this method was 

presented as the two-part sliding mode control to reduce 

the effect of the measurement noise. Next, to accurately 

estimate the disturbance affecting the system, a finite-time 

disturbance observer was introduced. Besides, by 

integrating the controller and the observer, an adaptive 

sliding mode controller was developed. In this paper, the 

main drawbacks of the sliding mode control method (the 

infinite convergence time and chattering) were addressed. 

Besides, the genetic algorithm was used to optimally tune 

the parameters of the controllers. Furthermore, a flowchart 

was provided to help design and tune the parameters. 

Accordingly, the proposed methods were studied by 

numerical simulations and compared with the SITSMC, 

PID, and TSMC controllers. The simulation results 

verified the effectiveness of the proposed controllers so 

that the FSMC and AFSMC with the settling times of 1.73s 

and 1.71s and the IAE of 0.509 and 0.4843, respectively, 

showed their effectiveness in controlling the CSTR. In the 

case of future studies, designing data-based controllers, 

especially model-free sliding mode controllers can be 

suggested. Furthermore, the estimation of the nonlinear 

parts of the system model via machine learning algorithms 

and controlling systems by intelligent controllers could be 

among other interesting research subjects. 
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Appendix A. 

To investigate the stability and tracking of the 

proposed two-part sliding mode control, the same sliding 

surface (9) is considered.  

One of the major features of this sliding surface is that 

the control input appears on the sliding surface itself, while 

in normal sliding surfaces, the control law appears by 

differentiating the sliding surface. This feature helps 

eliminate additional expressions before differentiating the 

sliding surface, thereby helping formulate a more 

appropriate control law.  

By substituting 2x  in the sliding surface (9), we will have: 

Ts F u d e(t )= + + − +2 0                                             (42) 

t

t
k sgn(e) e k sgn(e) e dt

 
+

1 2

0
1 2  
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By applying (18), additional expressions are removed, 

and the following sliding surface is obtained: 

T refs u y d e(t )=  − + − +2 2 0                                        (43) 

t

t
k sgn(e) e k sgn(e) e dt

 
+

1 2

0
1 2  

Thus, the first-order time derivative of the sliding 

surface is obtained as follows: 

T refs u y d k sgn(e) e k sgn(e) e
 

=  − + + +1 2

2 2 1 2    (44) 

To prove the stability of the controller, the following 

positive definite Lyapunov function is proposed: 

V s= 21

2
                  (45) 

By differentiating the Lyapunov function (45), we will 

have: 

TV ss ( u d k sgn(e) e k sgn(e) e )s
 

= =  + + +1 2

2 1 2   (46) 

By applying (19), we will have:  

V ss ( k sgn(s) d )s= = − + 2                  (47) 

According to assumption 2:  

V ( k sgn(s) d )s k s d s k s s= − + = − +  − + 2 2 2        (48) 

and for 2k   +  

V s −                   (49) 

Thus, the time derivative of the Lyapunov function is 

negative definite, and the proof is established. 

 

Appendix B. 

Considering sliding surface (9) and upon applying the 

control input (38), we will have; 

T
ˆs u d d e(t )=  + − − +2 0                  (50) 

t

t
k sgn(e) e k sgn(e) e dt

 
+

1 2

0
1 2  

Accordingly, additional expressions are removed, and 

the disturbance estimation ( d̂ ) is used to remove the 

effect of the disturbance. According to the proposed 

disturbance observer in the previous subsection with

d̂ d→ , the sliding manifold is obtained as follows: 

t

T t
s u e(t ) k sgn(e) e k sgn(e) e dt

 
=  − + +

1 2

0
0 1 2    (51) 

By removing the disturbance, the main problem in 

stabilizing the system is solved. The derivative of the 

sliding surface is obtained as follows:  

Ts u k sgn(e) e k sgn(e) e
 

=  + +1 2

1 2                (52) 

Given the following positive definite Lyapunov function: 

V s= 21

2
                  (53) 

By differentiating the Lyapunov function (53) and 

applying the control input (39), we will have: 

V ( k sgn(s))s= −                   (54) 

This is negative definite for positive amounts of k ,  

so the proof is established. 
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